
Course 142A Compilers & Interpreters
Syntactic Analysis Continued

Lecture Week 3

Prof. Dr. Luc Bläser



Last Lecture - Quiz

2

Expression = Expression [ ( "+" | "-" ) Term ].
Term = Number | "(" Expression ")".

Can we parse this grammar with a top down parser?



Left Recursion

▪ Top down parser is unable to parse

▪ But bottom-up parser can deal with it
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Expression = Expression [ ( "+" | "-" ) Term ].
Term = Number | "(" Expression ")".

Expression = Term { ( "+" | "-" ) Term }.
Term = Number | "(" Expression ")".

rewrite



Today’s Topics

▪ Bottom-Up Parser
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Learning Goals

▪ Understand how a bottom-up parser works

▪ Know how to generate the LR parsing table
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Top-Down Parser (LL)
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1 + (2 - 3)Input:

Derivation: Expression
Term + Term
1 + Term
1 + ( Expression )
1 + ( Term - Term )
1 + ( 2 - Term )
1 + ( 2 - 3 ) 

top-down

left-most expansion



Bottom-Up Parser (LR)

7

1 + (2 - 3)Input:

Derivation: Expression
Term + Term
Term + ( Expression )
Term + ( Term - Term )
Term + ( Term - 3 )
Term + ( 2 - 3 )
1 + ( 2 - 3 ) 

bottom-up

right-most reduction

Our focus



Top-Down vs. Bottom-Up
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start symbol

intermediate expression

intermediate expression

input

...top-down

expand
productions

bottom-up

reduce
productions



Bottom-Up Approach

▪ Read symbol in text without fix goal

▪ Check after each step, whether read sequence 
corresponds to a production

− If yes => reduce to syntax construct (REDUCE)

− If no => read next symbol in input (SHIFT)

▪ The start symbol remains at the end

− Otherwise syntax error
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Example Run-Through

10

Step Detected constructs Remaining input

1 + (2 - 3)

SHIFT 1 + (2 - 3)

REDUCE Term + (2 - 3)

SHIFT Term + (2 - 3)

SHIFT Term + ( 2 - 3)

SHIFT Term + ( 2 - 3)

REDUCE Term + ( Term - 3)

SHIFT Term + ( Term - - 3)

SHIFT Term + ( Term - 3 )

REDUCE Term + ( Term - Term )

REDUCE Term + ( Expression )

SHIFT Term + ( Expression )

REDUCE Term + Term

REDUCE Expression



Simplified Parsing Table
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Detected construct Rule

... Number REDUCE Term

... Term + Term REDUCE Expression

... Term - Term REDUCE Expression

... "(" Expression ")" REDUCE Term

Otherwise SHIFT

Suffix of detected constructs 
is decisive (stack principle)



Complete Parsing Table
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N + - ( ) $

I0 S: I3 S: I4

I1 S: I5 S: I6 A

I2 R: E = T R: E = T R: E = T R: E = T

I3 R: T = N R: T = N R: T = N R: T = N

I4 S: I3 S: I4

I5 S: I3 S: I4

I6 S: I3 S: I4

I7 S: I5 S: I6 S: I10

I8 R: E =E+T R: E =E+T R: E =E+T R: E =E+T

I9 R: E = E-T R: E = E-T R: E = E-T R: E = E-T

I10 R: T = (E) R: T = (E) R: T = (E) R: T = (E)

S: SHIFT
R: REDUCE
A: ACCEPT
otherwise ERROR



Parsing Table

▪ Construction is complicated

− LR-parser generator

▪ Decision conflicts are possible

− SHIFT-REDUCE conflicts

− REDUCE-REDUCE conflicts

− Resolution by programmer

− Or modification of grammar

− Or larger lookaheads
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LR-Parser

▪ More powerful than LL-parser

− E.g. can deal with left recursion
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LR(k)

LL(k)

Detectable grammars



LR-Parser Types

▪ LR(0)
− Computing parsing table without lookahead

− State is sufficient to decide

▪ SLR(k) (Simple LR)
− Lookahead on REDUCE to resolve certain conflicts

− No additional states

▪ LALR(k) (Look-Ahead LR)
− Analyzes grammar for LR(0) conflicts

− Uses lookaheads at conflict places with new states

▪ LR(k)
− A state per grammar step + lookahead

− Unpractical, too many states
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Powerfulness
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LR(k)

LALR(k)

SLR(k)

LR(0)

LL(k)



LR-Parser Details

▪ 4 possible steps

− SHIFT

− REDUCE

− ACCEPT

− ERROR

▪ Parser ingredients

− Parsing table (SHIFT, REDUCE etc.)

− State machine

− Derivation stack (detected symbols & latest states)

− Lookahead (remaining input symbols)

17



LR Parser Construction

1. Adjust grammar

− Augmented grammar

2. Compute state machine

− Item, Handle, Closure, Goto

3. Construct parsing table

− FOLLOW-Set
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Adjust Grammar (1)
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Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

Introduce dedicated start symbol
(augmented grammar)

Start = Expression.
Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

Replace EBNF repetitions 
by recursion

Start = Expression.
Expression = Term  | Expression ("+" | "-") Term.
Term = Number | "(" Expression ")".



Adjust Grammar (2)
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Start = Expression.
Expression = Term  | Expression ("+" | "-") Term.
Term = Number | "(" Expression ")".

Structure EBNF-alternatives and options
into multiple productions

Start = Expression.
Expression = Term.
Expression = Expression ("+" | "-") Term.
Term = Number.
Term = "(" Expression ")".



Item

▪ Item = Production with point ⚫ at right hand side

− Point denotes how far the parser has analyzed
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Example: Expression = Expression "+" Term.

Possible items:

[ Expression = ⚫ Expression "+" Term ]

[ Expression = Expression ⚫ "+" Term ]

[ Expression = Expression "+" ⚫ Term ]

[ Expression = Expression "+" Term ⚫ ]

Item with ⚫ at end is called handle => 
here we can reduce the production



Closure

▪ Transitive closure over sets of items
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closure { [ A = α ⚫ B β. ] } includes [ B = ⚫ γ. ] to 
the set, if ⚫ precedes non-terminal symbol B. 
Repeatedly perform this for all items in set.
(α, β, γ are terminal or non-terminal symbols.). 

Example:

closure { [ Start  = ⚫ Expression ] } = 
{ [ Start = ⚫ Expression] , 

[ Expression = ⚫ Term ], 
[ Expression = ⚫ Expression "+" Term ], 
[ Expression = ⚫ Expression "-" Term ], 
[ Term = ⚫ Number ], 
[ Term = ⚫ "(" Expression ")" ] }.



Goto

▪ Goto for item set I and symbol X

− X is a terminal or non-terminal symbol

▪ Serves to compute state machine
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Goto(I, X) = closure of all items [ A = α X ⚫ β ], if 
[ A = α ⚫ X β ] is part of I.

Parser proceeds 
with symbol X



Compute Gotos (1)
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Start state
I0 = { [ Start = ⚫ Expression ], 

[ Expression = ⚫ Term ], 
[ Expression = ⚫ Expression "+" Term ],
[ Expression = ⚫ Expression "-" Term ],
[ Term = ⚫ Number ],
[ Term = ⚫ "(" Expression ")" ] }

Goto(I0, Expression) = 
{ [ Start = Expression ⚫ ],

[ Expression = Expression ⚫ "+" Term ],
[ Expression = Expression ⚫ "-" Term ] } =: I1

Goto(I0, Term) = 
{ [ Expression = Term ⚫ ] } =: I2

Goto(I0, Number) = 
{ [ Term = Number ⚫ ] } =: I3



Compute All Gotos (2)
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Goto(I0, "(") = 
{ [ Term = "(" ⚫ Expression ")" ],

[ Expression = ⚫ Term ], 
[ Expression = ⚫ Expression "+" Term ],
[ Expression = ⚫ Expression "-" Term ],
[ Term = ⚫ Number ],
[ Term = ⚫ "(" Expression ")" ] } =: I4

Goto(I1, "+") = 
{ [ Expression = Expression "+" ⚫ Term ],

[ Term = ⚫ Number ],
[ Term = ⚫ "(" Expression ")" ] } =: I5

Goto(I1, "-") = 
{[ Expression = Expression "-" ⚫ Term ],

[ Term = ⚫ Number ],
[ Term = ⚫ "(" Expression ")" ] } =: I6



Compute All Gotos (3)
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Goto(I4, Expression) = 
{ [ Term = "(" Expression ⚫ ")" ],

[ Expression = Expression ⚫ "+" Term ],
[ Expression = Expression ⚫ "-" Term ] } =: I7

Goto(I4, Term) = { [ Expression = Term ⚫] } = I2

Goto(I4, Number) = { [ Term = Number ⚫] } = I3

Goto(I4, "(") = I4

Goto(I5, Term) = 
{ [ Expression = Expression "+" Term ⚫ ] } =: I8

Goto(I5, Number) = I3

Goto(I5, "(") = I4

Goto(I6, Term) = 
{ [ Expression = Expression "-" Term ⚫] } =: I9

Goto(I6, Number) = I3

Goto(I6, "(") = I4



Compute All Gotos (4)
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Goto(I7, ")") = 
{ [ Term = "(" Expression ")" ⚫] } =: I10

Goto(I7, "+") = I5

Goto(I7, "-") = I6



State Machine
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I0

I1

I2I3

I4

Expression

Term

Number

I5 I6

+ -

I8 I9

Term Term

(

I7I10 )

-+

(

Number

(

Term

((

Number
Number



FOLLOW-Set

▪ FOLLOW(X) = All terminal symbols that can follow 
after non-terminal symbol X.
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FOLLOW(Expression) = { "+", "-", ")", $ }
FOLLOW(Term)       = { "+", "-", ")", $ }

$ denotes 
end of input



Construct Parsing Table

▪ If [ Start = X ⚫ ] in I 
(X is original start symbol)
=> ACTION(I, $): ACCEPT

▪ If [ A = α ⚫ ] in I 
=> ACTION(I, a): REDUCE for each a in FOLLOW(A)

▪ If [ A = α ⚫ a β ] in I, Goto(I, a) = J
=> ACTION(I, a): SHIFT, go to J
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Parsing Table
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N + - ( ) $

I0 S: I3 S: I4

I1 S: I5 S: I6 A

I2 R: E = T R: E = T R: E = T R: E = T

I3 R: T = N R: T = N R: T = N R: T = N

I4 S: I3 S: I4

I5 S: I3 S: I4

I6 S: I3 S: I4

I7 S: I5 S: I6 S: I10

I8 R: E =E+T R: E =E+T R: E =E+T R: E =E+T

I9 R: E = E-T R: E = E-T R: E = E-T R: E = E-T

I10 R: T = (E) R: T = (E) R: T = (E) R: T = (E)

S: SHIFT
R: REDUCE
A: ACCEPT
otherwise ERROR

E: Expression
T: Term
N: Number



Parser Stack

▪ Stack of currently detected symbols including state
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Stack

$ I0

$ I0 1 I3

Input

1 + 2

+ 2

Top of stack
symbol 1 with state I3

Initial stack
empty with state I0

SHIFT I3



Parsing Operations

▪ SHIFT symbol a in state I

− push (a, Goto(I, a))

▪ REDUCE X = ... with n symbols on right hand side

− n times pop()

− Look at current state I on stack

− push (X, Goto(I, X))
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$ I0 1 I3 REDUCE  Term = Number.

$ I0 Term Goto(I0, Term) = I2

$ I0 Term I2



Parsing 1 + (2 - 3)
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Op Stack Input rest

$ I0 1+(2-3)$

S $ I0 1 I3 +(2-3)$

R $ I0 Term I2 +(2-3)$

R $ I0 Expr I1 +(2-3)$

S $ I0 Expr I1 + I5 (2-3)$

S $ I0 Expr I1 + I5 ( I4 2-3)$

S $ I0 Expr I1 + I5 ( I4 2 I3 -3)$

R $ I0 Expr I1 + I5 ( I4 Term I2 -3)$

R $ I0 Expr I1 + I5 ( I4 Expr I7 -3)$

S $ I0 Expr I1 + I5 ( I4 Expr I7 - I6 3)$

S $ I0 Expr I1 + I5 ( I4 Expr I7 - I6 3 I3 )$

R $ I0 Expr I1 + I5 ( I4 Expr I7 - I6 Term I9 )$

R $ I0 Expr I1 + I5 ( I4 Expr I7 )$

S $ I0 Expr I1 + I5 ( I4 Expr I7 ) I10 $

R $ I0 Expr I1 + I5 Term I8 $

R $ I0 Expr I1 $
ACCEPT



Discussion

▪ LL(k) parser is often sufficient in practice

− Grammar can usually be adjusted to it

▪ C++, Java and C# have hand-crafted LL-parser

− Although grammar is not designed for LL

− Need to rewrite grammar at some places

− Or require larger lookahead

▪ LALR(k) is common in parser generators

− yacc, bison

▪ But also LL(k) is regaining importance

− AntLR, Coco/R
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Review: Learning Goals

✓ Understand how a bottom-up parser works

✓ Know how to generate the LR parsing table
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Further Reading

▪ Dragon Book, Chapter 4 (Syntax Analysis)

− Sections 4.5 – 4.6 (Bottom-Up Parser, SLR)

▪ Optional, if interested

− Sections 4.7 – 4.8 (LR and LALR)

− Section 4.9 (Yacc Generator)

37
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Last Lecture - Quiz
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Is the program syntactically correct?
What does the parser return?

boolean x;
if (x + x) {

int x;
x = 0;

}



Syntactic Analysis

▪ Context-free grammar

▪ Parser returns syntax tree
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Variable
boolean x

IfStatement

Binary-
Expression

Identifier x Identifier x

LocalDecl. 
int x

Assignment

Identifier x
IntegerLiteral 

0



Semantic Analysis

▪ Context-sensitive rules

▪ Types, declarations etc.
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boolean x;
if (x + x) {
int x;
x = 0;

}

boolean cannot 
be added

Multiple 
declaration



Today’s Content

▪ Semantic checker

▪ Symbol table

▪ Name resolution

▪ Type checks
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Learning Goals

▪ Understand the purpose and functionality of the 
semantic  analysis

▪ Understand the design and construction of a symbol 
table 

▪ Know how to implement type resolution and type 
checks
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Compiler Frontend
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Lexer / Scanner

Parser

Semantic Checker

Program text

Token stream

Syntax tree

Intermediate representation

Lexical analysis

Syntactic analysis

Semantic analysis

(optional optimization)



Our Focus: Semantic Checker
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=

x +

1 3

int x;=

x +

1 3

Semantic Checker

Syntax tree

Intermediate representation



Semantic Checker

▪ Cares about the semantic analysis

▪ Input: Syntax tree

− Concrete or abstract

▪ Output: Intermediate representation

− Abstract syntax tree + symbol table

46



Tasks of a Semantic Checker

▪ Check whether the program conforms with the 
semantic language rules

▪ Transform the program into a form that can be 
easily processed by code generation

47



Declarations
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class Counter {
int number;

void set(int value) {
int temp; 
temp = number;
number = value;
writeInt(temp);

}

void increase() {
number = number + 1;

}
}

Declarations appear in hierarchical scopes



Symbol Table

▪ Data structure for managing declarations

▪ Reflects hierarchical program scopes
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class Counter

number variable int

set method 

increase method

method set

value parameter int

temp variable int

method increase



Global Scope

Global Scope

▪ Multiple classes in program
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class X {
Y ref;

}

class Y {
int x;

}

class Z {
Z sub;

}

class X

ref var Y

class Y

x var int

class Z

sub var Z



Shadowing

▪ Declaration in inner scopes shadow equally named 
declaration in other scopes
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class C {
int x;

void m1() {
int x;

}

void m2() {
boolean x;

}
}

Verdecken 
äusseres x

Shadow 
outer x



Scopes of Local Variables
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void m(int x) {
int y;
y = x;
while (y > 0) {
writeInt(y);
int z;
z = y;
y = z - 1;

}
}

Scope 
of y

Scope
of z

Shadowing within same-method-scopes are usually forbidden



Symbol Table Design
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{abstract} Symbol

scope: Symbol
identifier: string

GlobalScope TypeSymbol
*

MethodSymbol VariableSymbol

*

*
ClassSymbol

*



More Detailed Relations
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TypeSymbol

MethodSymbol VariableSymbol

*

*

ClassSymbol
*

fields

parameters

localVariables *

typereturnType



Design Aspects (1)

▪ Type information for variable symbol

− Initially unresolved (identifier)

▪ Additional information

− Class: Base class
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Design Aspects (2)

▪ Local variables

− Remember declaration range (statements)

▪ Extended variable design:
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{abstract} 
VariableSymbol

FieldSymbol LocalSymbol

visibleIn: 
Set<Statement>

ParameterSymbol



Design Aspects (3)

▪ Extended type design:

− Classes

− Inbuilt types (int, boolean, string)

− Arrays

57

{abstract} 
TypeSymbol

ClassSymbol InbuiltType ArrayType

elementType



Special Cases

▪ Predefined types: int, boolean, string

− Insert as inbuilt types to global scope

▪ Predefined constants: true, false, null, this

− true, false, null as constants in global scope

− null is poly-type (compatible to all reference types)

− “this” needs special handling in the analysis

▪ Predefined methods: writeString etc.

▪ Predefined variables: length

− Only for array types

− Read-only

58



Approach

▪ Construct symbol table

▪ Resolve types in table

▪ Resolve declarations in AST

▪ Resolve types in AST

59



1. Construct Symbol Table

▪ Traverse AST

− Start in global scope

− For each class, method, parameter, variable 

• Insert symbol in surrounding scope

− Explicit traversal or with visitor

60

Forward references => do not yet 
resolve type names or designators



2. Resolve Types in Table

▪ For variables, parameters, return type etc.

▪ Search by identifier in symbol table
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VariableSymbol

VariableSymbol ClassSymbol

identifier = "T"

unresolved

resolved

T x;



Name Resolution

▪ Question: "Which symbol declares identifier "id"?

62

Global Scope

Class A

Method B

1. Search inner-most 
scope

2. Search next outer scope

3. Search outer-most scope



Search Function
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Symbol find(Symbol scope, String identifier) {
if (scope == null) {
return null;

}
for (Symbol declaration : scope.allDeclarations()) {
if (declaration.getIdentifier().equals(identifier)) {

return declaration;
}

}
return find(scope.getScope(), identifier);

}

E.g. variables & 
methods inside class

Recursive search in 
next outer scope



3. Resolve Declarations in AST

▪ Traverse execution code in AST

− Method body

▪ Resolve each designator

− Associate declaration

64

Assignment

BasicDesignator 
b

BinaryExpression
>

BasicDesignator
x

Literal
0

VariableSymbol

identifier = "b"
type = "boolean"

VariableSymbol

identifier = "x"
type = "int"



4. Resolve Types in AST

▪ Associate type for each expression

− Literal: Predefined type

− Designator: Type of declaration

− Unary/BinaryExpression: Result of operator

65

Assignment

BasicDesignator
b

BinaryExpression
>

BasicDesignator
x

Literal
0

InbuiltType

"boolean"

InbuiltType

"int"



Resolution Procedure

▪ Post order traversal

− First resolve types in lower nodes

▪ We can leave AST unmodified

− Use maps in symbol table

• DesignatorNode -> Symbol (declaration)

• ExpressionNode -> TypeSymbol (type)
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Type Resolution per Visitor
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@Override

public void visit(BinaryExpressionNode node) {

Visitor.super.visit(node); // post-order traversal

…

if (node.getOperator() == Operator.PLUS) {

symbolTable.fixType(node, GlobalScope.INT_TYPE);

}

…

}



All Resolved

68

Which checks do we have 
to perform now?



Semantic Checks

▪ All designators refer to variables/methods

▪ Types match on operators

▪ Compatible types on assignments

▪ Arguments matches parameters

▪ Conditions in if, while are boolean

▪ Return expression matches

▪ No multiple same declarations

▪ No identifier is a reserved keyword

▪ Exactly one main-method

▪ Array length is read-only

▪ More according language report…

69

Type rules



Types Match on Operators
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1 + true;

!3

1 && 2

array == null



Visitor Extension
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@Override

public void visit(BinaryExpressionNode node) {

Visitor.super.visit(node); // post-order traversal

var leftType = symbolTable.findType(node.getLeft());

var rightType = symbolTable.findType(node.getRight());

if (node.Operator == Operator.PLUS) {

if (leftType != GlobalScope.INT_TYPE ||

rightType != GlobalScope.INT_TYPE) { 

error(); 

}

symbolTable.fixType(node, GlobalScope.INT_TYPE);

}

…

}



Type-Compatibility on Assignments 

▪ Same type left and right

− int x; x = 12;

▪ Null assignment

− int[] x; x = null;

− For all reference types (strings, arrays, classes)

▪ OO type polymorphism

− Vehicle v; v = new Car();

− If Car is a sub-class of Vehicle

72



Argument List Matching Parameter List

▪ Uniquely defined static target method

▪ #arguments = #parameters

▪ nth argument is type-compatible to nth parameter
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start(12345, true, myRefA)

void start(int x, boolean b, A a) {
}

Compatible types

How much would overloading complicate this?



No Multiple Same Declarations

▪ In same scope
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int x;
boolean x;

int f;
void f() { }

void f() {}
void f(int x) {}

Allowed with overloading

In Java allowed
but not in C++ and C#



Reserved Keywords

▪ Identifiers cannot be named like keywords

− If not yet prevented by lexer
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int int;

boolean true;

class void {
}



Additional Checks

▪ No exit without return (except void)

▪ Reading uninitialized variables

▪ Null dereferencing

▪ Invalid array index

▪ Division by zero

▪ Out of memory on new()
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Not decidable in general
=> Static analysis
=> Runtime checks



Intermediate Representation

▪ Symbol table with resolved AST yields intermediate 
representation for the compiler backend

− Code generation and optimization

77

Topic of next week



Review: Learning Goals

✓ Understand the purpose and functionality of the 
semantic  analysis

✓ Understand the design and construction of a symbol 
table 

✓ Know how to implement type resolution and type 
checks
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Further Reading

▪ Dragon Book, selected sections

− Section 2.7 (Symbol Tables)

− Section 6.3 (Types and Declarations)

− Section 6.5 (Type Checking)
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