Course 142A Compilers & Interpreters
Syntactic Analysis Continued

Lecture Week 3
Prof. Dr. Luc Blaser

Last Lecture - Quiz

Expression = Expression [("+" | "-") Term].
Term = Number | "(" Expression ")".

17 . .
&v‘ Can we parse this grammar with a top down parser?

Left Recursion

= Top down parser is unable to parse

Expression = Expression [("+" | "-") Term].

Term = Number | "(" Expression ")".
rewrite

Expression = Term { ("+" | "-") Term }.

Term = Number | "(" Expression ")".

" But bottom-up parser can deal with it

Today’s Topics

= Bottom-Up Parser

Learning Goals

= Understand how a bottom-up parser works
= Know how to generate the LR parsing table

Input:

Derivation:

Top-Down Parser (LL)

1+(2-3)

Expression

Term + Term

1+ Term

1 + (Expression)
+ (Term - Term)
+(2-Term)
+(2

3)

—_—>
left-most expansion

top-down

Bottom-Up Parser (LR)

Input: 1+(2-3)

Derivation: Expression 4
Term + Term
Term + (Expression)
Term + (Term - Term) | bottom-up
Term+ (Term - 3)
Term+(2-3)
1+(2-3)

—
right-most reduction

Our focus

Top-Down vs. Bottom-Up

start symbol
expand

productions ‘ .

intermediate expression

*
*

top-down bottom-up

intermediate expressmn

f reduce
productions

$

input

Bottom-Up Approach

Read symbol in text without fix goal

Check after each step, whether read sequence
corresponds to a production

— If yes => reduce to syntax construct (REDUCE)

— If no => read next symbol in input (SHIFT)

The start symbol remains at the end

— Otherwise syntax error

Example Run-Through

_ Detected constructs Remaining input

1+(2-3)
SHIFT 1 +(2-3)
REDUCE Term +(2-3)
SHIFT Term + (2 -3)
SHIFT Term + (2-3)
SHIFT Term + (2 - 3)
REDUCE Term + (Term - 3)
SHIFT Term + (Term - - 3)
SHIFT Term + (Term -3)
REDUCE Term + (Term - Term)
REDUCE Term + (Expression)
SHIFT Term + (Expression)
REDUCE Term + Term
REDUCE Expression

Simplified Parsing Table

Detected construct Rule

... Number REDUCE Term
... lerm + Term REDUCE Expression
... lerm - Term REDUCE Expression
... "(" Expression")" REDUCE Term

Otherwise SHIFT

Suffix of detected constructs
is decisive (stack principle)

11

S: SHIFT
R: REDUCE

Complete Parsing Table |

otherwise ERROR

I T N O I P O
lo S: 1, St 1y

S: g
S: 5
S: g

S: g
R:E=T
R:T=N

S: g

R: E=E+T
R: E=E-T
R: T = (E)

S:lg
RiE=T
R:T=N

S:lg

R: E=E+T
R: E=E-T
R: T =(E)

S:1,
S:1,
S:1,

A
R:E=T R:E=T
R:T=N R:T=N

SHE P

R: E=E+T R:E=E+T
R:E=E-T R:E=E-T
R:T=(E) R:T=(E)

12

Parsing Table

Construction is complicated
— LR-parser generator

Decision conflicts are possible
— SHIFT-REDUCE conflicts

— REDUCE-REDUCE conflicts

— Resolution by programmer

— Or modification of grammar

— Or larger lookaheads

13

More powerful than LL-parser

LR-Parser

— E.g. can deal with left recursion

Detectable grammars

-

LR(k)

-

LL(K)

~

~

14

LR-Parser Types

LR(O)

— Computing parsing table without lookahead

— State is sufficient to decide

SLR(k) (Simple LR)

— Lookahead on REDUCE to resolve certain conflicts
— No additional states

LALR(k) (Look-Ahead LR)

— Analyzes grammar for LR(0) conflicts

— Uses lookaheads at conflict places with new states
LR(k)

— A state per grammar step + lookahead

— Unpractical, too many states

15

Powerfulness

LL(K)

LR(k)

LALR(k)

SLR(k)

LR(O)

LR-Parser Details

4 possible steps
— SHIFT

— REDUCE

— ACCEPT

— ERROR

Parser ingredients

— Parsing table (SHIFT, REDUCE etc.)

— State machine

— Derivation stack (detected symbols & latest states)
— Lookahead (remaining input symbols)

17

LR Parser Construction

1. Adjust grammar

— Augmented grammar

2. Compute state machine

— Item, Handle, Closure, Goto

3. Construct parsing table
— FOLLOW-Set

18

Adjust Grammar (1)

Expression = Term { ("+" | "-") Term }.
Expression ")".

i

Term = Number

Introduce dedicated start symbol
(augmented grammar)

Start = Expression.
Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

4

Start = Expression.
Expression = Term | Expression ("+
Term = Number | "(" Expression ")".

Replace EBNF repetitions
by recursion

-") Term.

19

Adjust Grammar (2)

Start = Expression.
Expression = Term | Expression ("+" | "-") Term.
Term = Number | "(" Expression ")".

Structure EBNF-alternatives and options
into multiple productions

Start = Expression.

Expression = Term.

Expression = Expression ("+" | "-") Term.
Term = Number.

Term = "(" Expression ")".

20

ltem = Production with point ® at right hand side

Item

— Point denotes how far the parser has analyzed

Example: Expression
Possible items:

[Expression
| Expression

| Expression

| Expression

Expression "+" Term.

® Expression "+" Term |

Expression @ "+" Term |

Expression "+" @ Term |

Expression "+" Term @]

ltem with @ at end is called handle =>
here we can reduce the production

21

Closure

Transitive closure over sets of items

closure {[A=a®Bf.]}includes[B=®y.]to
the set, if ® precedes non-terminal symbol B.
Repeatedly perform this for all items in set.

(a, B, y are terminal or non-terminal symbols.).

Example:

closure { [Start = ® Expression] }=
{ [Start = @ Expression],
[Expression = @ Term |,
[Expression = @ Expression "+" Term |,
[Expression = @ Expression "-" Term |,
[Term = ® Number],
[Term = @ "(" Expression ")"] }.

22

Goto

Goto for item set | and symbol X

— X is a terminal or non-terminal symbol

Goto(l, X) = closure of all items [A=a X ® B], if
[A=0 ® X[]is partofl.

Parser proceeds
with symbol X

Serves to compute state machine

23

Compute Gotos (1)

Start state

|, ={ [Start = ® Expression],
[Expression = @ Term |,
[Expression = @ Expression "+" Term],
[Expression = @ Expression "-" Term],
[Term = @ Number],
[Term = @ "(" Expression ")"] }

Goto(l,, Expression) =
{ [Start = Expression @],
[Expression = Expression @ "+" Term],
[Expression = Expression @ "-"Term] } =: |,

Goto(l,, Term) =
{ [Expression=Term @] } =: |,

Goto(l,, Number) =
{[Term = Number ® | } =: |,

24

Compute All Gotos (2)

Goto(ly, "(") =
{[Term="(" ® Expression ")"],
[Expression = @ Term |,
[Expression = @ Expression "+" Term],
[Expression = @ Expression "-" Term],
[Term = @ Number],
[Term = @ "(" Expression ")"]} =:1,

Goto(l,, "+") =
{ [Expression = Expression "+" @ Term |,
[Term = @ Number],
[Term = @ "(" Expression ")"] } =: I,

Goto(l,, "-") =
{[Expression = Expression "-" @ Term |,
[Term = ® Number],
[Term = @ "(" Expression ")"] } =: I,

25

Compute All Gotos (3)

Goto(l,, Expression) =
{[Term ="(" Expression @ ")"],
[Expression = Expression @ "+" Term |,
[Expression = Expression @ "-"Term] } =: |,

Goto(l,, Term) = { [Expression = Term @] } = |,
Goto(l,, Number) = { [Term = Number @] } =,
Goto(l,, "(") =1,

Goto(l, Term) =

{ [Expression = Expression "+" Term @] } =: |,
Goto(ls, Number) = I,
Goto(lg, "(") =1,

Goto(l, Term) =

{ [Expression = Expression "-" Term @] } =: |,
Goto(lg, Number) = I,
Goto(l, "(") =1,

26

Compute All Gotos (4)

Goto(l,, ")") =

{[Term ="(" Expression ")" @] }=:1,,
Goto(l,, "+") = I
Goto(l,, "-") = I,

27

State Machine

+ Il

Expression

Number

28

FOLLOW-Set

FOLLOW(X) = All terminal symbols that can follow
after non-terminal symbol X.

FOLLOW(Expression)
FOLLOW(Term)

i
A

S denotes
end of input

29

Construct Parsing Table

If [Start=X®]in |
(X is original start symbol)
=> ACTION(I, S): ACCEPT

f[A=a®]in |

=> ACTION(l, a): REDUCE for each a in FOLLOW(A)
f[A=a®afB]inl, Goto(l, a) =)

=> ACTION(I, a): SHIFT, go to

30

S: SHIFT
R: REDUCE
A: ACCEPT

otherwise ERROR

Parsing Table

E: Expression
T. Term
N: Number

I N S O U I
lo S: g S: 1,

S: g
S: 5
S: g

S: g
R:E=T
R:T=N

S: g

R: E=E+T
R: E=E-T
R: T =(E)

S:lg
RiE=T
R:T=N

S:lg

R: E=E+T
R: E=E-T
R: T =(E)

S:1,
S:1,
S:1,

RiE=T
R: T=N

SHE P

R: E=E+T
R: E=E-T
R: T = (E)

A
RiE=T
R: T=N

R: E=E+T
R: E=E-T
R: T =(E)

31

Parser Stack

Stack of currently detected symbols including state

Stack Input

$ I, 1 + 2

l_Y_I

Initial stack
empty with state I, SHIFT I3

$ I, 1 I, + 2

_Y_I

Top of stack
symbol 1 with state I,

32

Parsing Operations

SHIFT symbol a in state |

— push (a, Goto(l, a))

REDUCE X = ... with n symbols on right hand side
— n times pop()

— Look at current state | on stack

— push (X, Goto(l, X))

$ I, 1 I, REDUCE Term = Number.
% Ie Term Goto(l,, Term) =1,

$ I, Term I,

33

Parsing 1 + (2 - 3)

- H H H H H H H H H H H H H H H
® O &O®© o OO O O O o0 O 0O o0 o oo o

()

o 0 W W OV L1 L. T 0D LN N LN D 0 N
A A A A A A A A A A A A A

1+(2-3)$%
11, +(2-3)%
Term I, +(2-3)%
Expr I, +(2-3)%
Expr I, + I, (2-3)%
Expr I, + I. (I, 2-3)%
Expr I, + I. (I, 2 I, -3)%
Expr I, + I (I, Term I, -3)%
Expr I, + I (I, Expr I, -3)%
Expr I, + I (I, Expr I, - I, 3)%
Expr I, + I (I, Expr I, - I, 3 I,)$
Expr I, + I. (I, Expr I, - I, Term I,)$
Expr I, + I. (I, Expr I,)$
Expr I, + I, (I, Expr I,) I, $
Expr I, + I. Term I, $
Expr I,

ACCEPT »

Discussion

LL(k) parser is often sufficient in practice

— Grammar can usually be adjusted to it

C++, Java and C# have hand-crafted LL-parser
— Although grammar is not designed for LL

— Need to rewrite grammar at some places

— Or require larger lookahead

LALR(k) is common in parser generators

— yacg, bison

But also LL(k) is regaining importance

— AntLR, Coco/R

35

Review: Learning Goals

v" Understand how a bottom-up parser works
v" Know how to generate the LR parsing table

36

Further Reading

Dragon Book, Chapter 4 (Syntax Analysis)
— Sections 4.5 — 4.6 (Bottom-Up Parser, SLR)

Optional, if interested
— Sections 4.7 — 4.8 (LR and LALR)
— Section 4.9 (Yacc Generator)

37

Course 142A Compilers & Interpreters
Semantic Analysis

Lecture Week 3, Wednesday
Prof. Dr. Luc Blaser

Last Lecture - Quiz

boolean Xx;
if (x + x) A
int Xx;
X = 0;

Is the program syntactically correct?
What does the parser return?

39

Context-free grammar

Syntactic Analysis

Parser returns syntax tree

Variable
boolean x

IfStatement

Sy,
s
S
l’/ce //yc
Oy,

Binary- LocalDecl.

. . Assignment
Expression Int X

IntegerLiteral
0

Identifier x Identifier x Identifier x

40

Semantic Analysis

Context-sensitive rules

S
| N
Types, declarations etc. ’71‘/0
6”@’
b""o
(5

boolean Xx;
if (x +.x) A
int Xx;

boolean cannot
be added

Multiple
declaration

41

Today’s Content

Semantic checker
Symbol table
Name resolution
Type checks

42

Learning Goals

Understand the purpose and functionality of the
semantic analysis

Understand the design and construction of a symbol
table

Know how to implement type resolution and type
checks

43

Compiler Frontend

Program text

Lexer / Scanner Lexical analysis

Token stream

Parser Syntactic analysis

Syntax tree

Semantic Checker Semantic analysis

Intermediate representation

(optional optimization)
44

Our Focus: Semantic Checker

Syntax tree

Semantic Checker

int x;

Intermediate representation

45

Semantic Checker

Cares about the semantic analysis
Input: Syntax tree
— Concrete or abstract

Output: Intermediate representation
— Abstract syntax tree + symbol table

46

Tasks of a Semantic Checker

Check whether the program conforms with the
semantic language rules

Transform the program into a form that can be
easily processed by code generation

47

Declarations

class Counter {
int number;

void set(int value) {
int temp;
temp = number;
humber = value;
writeInt(temp);

¥

void increase() {
humber = number + 1;

}
}

Declarations appear in hierarchical scopes

48

Symbol Table

= Data structure for managing declarations
= Reflects hierarchical program scopes

number variable int
set method
increase method 1 value parameter int

\ temp variable int

49

Global Scope

Multiple classes in program

-

class X { class Y { class Z {
Y ref; int x; Z sub;
} } }
Global Scope N
ref var 'Y X var int sub var Z
/

50

Shadowing

Declaration in inner scopes shadow equally named
declaration in other scopes

class C {
int Xx;
void ml() {
int x;
J Shadow
void m2() { outer x

boolean Xx;

¥
¥

51

Scopes of Local Variables

void m(int x) { Scope
int y; of y
yoxio

while (y > 0) {
writeInt(y); Scope
int z; of z

Shadowing within same-method-scopes are usually forbidden

52

Symbol Table Design

{abstract} Symbol

scope: Symbol
identifier: string

GlobalScope

TypeSymbol

A

ClassSymbol

MethodSymbol

>

VariableSymbol

T*

53

More Detailed Relations

TypeSymbol

returnType

ClassSymbol

parameters

*

type

== MethodSymbol

localVariables

>

*

VariableSymbol

>

A>I<

fields

54

Design Aspects (1)

Type information for variable symbol

— Initially unresolved (identifier)

Additional information

— Class: Base class

55

Design Aspects (2)

= |ocal variables

— Remember declaration range (statements)

= Extended variable design:

{abstract}
VariableSymbol

FieldSymbol

LocalSymbol

visibleln:
Set<Statement>

ParameterSymbol

56

Design Aspects (3)

Extended type design:

— Classes

— Inbuilt types (int, boolean, string)

— Arrays
{abstract}
TypeSymbol
ClassSymbol InbuiltType ArrayType

elementType

57

Special Cases

Predefined types: int, boolean, string
— Insert as inbuilt types to global scope

Predefined constants: true, false, null, this

— true, false, null as constants in global scope

— null is poly-type (compatible to all reference types)
— “this” needs special handling in the analysis

Predefined methods: writeString etc.

Predefined variables: length
— Only for array types
— Read-only

58

Approach

Construct symbol table
Resolve types in table
Resolve declarations in AST

Resolve types in AST

59

1. Construct Symbol Table

Traverse AST

— Start in global scope

— For each class, method, parameter, variable
* Insert symbol in surrounding scope

— Explicit traversal or with visitor

60

2. Resolve Types in Table

= Forvariables, parameters, return type etc.

= Search by identifier in symbol table

VariableSymbol @

¥

VariableSymbol

—p ClassSymbol

identifier = "T"

unresolved

resolved

61

Name Resolution

= Question: "Which symbol declares identifier "id"?

/ Global Scope \

3. Search outer-most scope

4 class A N

2. Search next outer scope

a Method B A

l 1. Search inner-most

scope

v J

Search Function

Symbol find(Symbol scope, String identifier)

if (scope == null) { E.g. variables &
return null; methods inside class
}
for (Symbol declaration : scope.allDeclarations()) {
if (declaration.getIdentifier().equals(identifier)) {
return declaration;

}
}

return find(scope.getScope(), identifier);
}

Recursive search in
next outer scope

63

3. Resolve Declarations in AST

Traverse execution code in AST
— Method body

Resolve each designator

— Associate declaration

Assignment VariableSymbol

i identifier = "b"
) _ type = "boolean"

BasicDesignator BinaryExpression
b >

VariableSymbol

BasicDesignator ' Literal identifier = "x"

X ‘ 0 type = "int"

64

4. Resolve Types in AST

= Associate type for each expression
— Literal: Predefined type
— Designator: Type of declaration
— Unary/BinaryExpression: Result of operator

Assignment InbuiltType
"boolean"
Ba5|cDe5|gnator BmaryExpressmn /
—> InbuiltType

BasicDesignator Literal f Mint"
0

X

Resolution Procedure

Post order traversal
— First resolve types in lower nodes
We can leave AST unmodified

— Use maps in symbol table
* DesignatorNode -> Symbol (declaration)

* ExpressionNode -> TypeSymbol (type)

66

Type Resolution per Visitor

@Override
public void visit(BinaryExpressionNode node) {
Visitor.super.visit(node); // post-order traversal

if (node.getOperator() == Operator.PLUS) {
symbolTable.fixType(node, GlobalScope.INT TYPE);

}

67

All Resolved

o ,@ Which checks do we have
- to perform now?

Semantic Checks

All designators refer to variables/methods
Types match on operators)
Compatible types on assignments
Arguments matches parameters = Type rules
Conditions in if, while are boolean
Return expression matches)
No multiple same declarations

No identifier is a reserved keyword
Exactly one main-method

Array length is read-only

More according language report...

69

Types Match on Operators

1+ true;/é??
N

1&&2;

array == null

70

Visitor Extension

@Override

public void visit(BinaryExpressionNode node) {
Visitor.super.visit(node); // post-order traversal
var leftType = symbolTable.findType(node.getlLeft());
var rightType = symbolTable.findType(node.getRight());

if (node.Operator == Operator.PLUS) {
if (leftType != GlobalScope.INT_TYPE ||

rightType != GlobalScope.INT_TYPE) {
error();

}
symbolTable.fixType(node, GlobalScope.INT TYPE);
}

71

Type-Compatibility on Assignments

Same type left and right

—intx; x=12;

Null assignment

— int[] x; x = null;

— For all reference types (strings, arrays, classes)
OO0 type polymorphism

— Vehicle v; v = new Car();

— If Car is a sub-class of Vehicle

72

Argument List Matching Parameter List

Uniquely defined static target method
#arguments = #parameters
nth argument is type-compatible to nt" parameter

start(12345, true, myRefA)

i1 1 1

void start(int x, boolean b, A a) {

¥

17
&Q How much would overloading complicate this?

73

No Multiple Same Declarations

In same scope

int. X; inthE;
boolean x; void () { }

void) {}
void f(int x) {}

74

Reserved Keywords

|dentifiers cannot be named like keywords
— If not yet prevented by lexer

int int; ’
boolean true}
class void {,
}

75

Additional Checks

No exit without return (except void)
Reading uninitialized variables

Null dereferencing

Invalid array index

Division by zero

Out of memory on new()

Not decidable in general
=> Static analysis
=> Runtime checks

76

Intermediate Representation

Symbol table with resolved AST yields intermediate
representation for the compiler backend

— Code generation and optimization

Topic of next week

77

Review: Learning Goals

Understand the purpose and functionality of the
semantic analysis

Understand the design and construction of a symbol
table

Know how to implement type resolution and type
checks

78

Further Reading

Dragon Book, selected sections

— Section 2.7 (Symbol Tables)
— Section 6.3 (Types and Declarations)
— Section 6.5 (Type Checking)

79

