
Course 142A Compilers & Interpreters
Syntactic Analysis Continued

Lecture Week 3

Prof. Dr. Luc Bläser

Last Lecture - Quiz

2

Expression = Expression [("+" | "-") Term].
Term = Number | "(" Expression ")".

Can we parse this grammar with a top down parser?

Left Recursion

▪ Top down parser is unable to parse

▪ But bottom-up parser can deal with it

3

Expression = Expression [("+" | "-") Term].
Term = Number | "(" Expression ")".

Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

rewrite

Today’s Topics

▪ Bottom-Up Parser

4

Learning Goals

▪ Understand how a bottom-up parser works

▪ Know how to generate the LR parsing table

5

Top-Down Parser (LL)

6

1 + (2 - 3)Input:

Derivation: Expression
Term + Term
1 + Term
1 + (Expression)
1 + (Term - Term)
1 + (2 - Term)
1 + (2 - 3)

top-down

left-most expansion

Bottom-Up Parser (LR)

7

1 + (2 - 3)Input:

Derivation: Expression
Term + Term
Term + (Expression)
Term + (Term - Term)
Term + (Term - 3)
Term + (2 - 3)
1 + (2 - 3)

bottom-up

right-most reduction

Our focus

Top-Down vs. Bottom-Up

8

start symbol

intermediate expression

intermediate expression

input

...top-down

expand
productions

bottom-up

reduce
productions

Bottom-Up Approach

▪ Read symbol in text without fix goal

▪ Check after each step, whether read sequence
corresponds to a production

− If yes => reduce to syntax construct (REDUCE)

− If no => read next symbol in input (SHIFT)

▪ The start symbol remains at the end

− Otherwise syntax error

9

Example Run-Through

10

Step Detected constructs Remaining input

1 + (2 - 3)

SHIFT 1 + (2 - 3)

REDUCE Term + (2 - 3)

SHIFT Term + (2 - 3)

SHIFT Term + (2 - 3)

SHIFT Term + (2 - 3)

REDUCE Term + (Term - 3)

SHIFT Term + (Term - - 3)

SHIFT Term + (Term - 3)

REDUCE Term + (Term - Term)

REDUCE Term + (Expression)

SHIFT Term + (Expression)

REDUCE Term + Term

REDUCE Expression

Simplified Parsing Table

11

Detected construct Rule

... Number REDUCE Term

... Term + Term REDUCE Expression

... Term - Term REDUCE Expression

... "(" Expression ")" REDUCE Term

Otherwise SHIFT

Suffix of detected constructs
is decisive (stack principle)

Complete Parsing Table

12

N + - () $

I0 S: I3 S: I4

I1 S: I5 S: I6 A

I2 R: E = T R: E = T R: E = T R: E = T

I3 R: T = N R: T = N R: T = N R: T = N

I4 S: I3 S: I4

I5 S: I3 S: I4

I6 S: I3 S: I4

I7 S: I5 S: I6 S: I10

I8 R: E =E+T R: E =E+T R: E =E+T R: E =E+T

I9 R: E = E-T R: E = E-T R: E = E-T R: E = E-T

I10 R: T = (E) R: T = (E) R: T = (E) R: T = (E)

S: SHIFT
R: REDUCE
A: ACCEPT
otherwise ERROR

Parsing Table

▪ Construction is complicated

− LR-parser generator

▪ Decision conflicts are possible

− SHIFT-REDUCE conflicts

− REDUCE-REDUCE conflicts

− Resolution by programmer

− Or modification of grammar

− Or larger lookaheads

13

LR-Parser

▪ More powerful than LL-parser

− E.g. can deal with left recursion

14

LR(k)

LL(k)

Detectable grammars

LR-Parser Types

▪ LR(0)
− Computing parsing table without lookahead

− State is sufficient to decide

▪ SLR(k) (Simple LR)
− Lookahead on REDUCE to resolve certain conflicts

− No additional states

▪ LALR(k) (Look-Ahead LR)
− Analyzes grammar for LR(0) conflicts

− Uses lookaheads at conflict places with new states

▪ LR(k)
− A state per grammar step + lookahead

− Unpractical, too many states

15

Powerfulness

16

LR(k)

LALR(k)

SLR(k)

LR(0)

LL(k)

LR-Parser Details

▪ 4 possible steps

− SHIFT

− REDUCE

− ACCEPT

− ERROR

▪ Parser ingredients

− Parsing table (SHIFT, REDUCE etc.)

− State machine

− Derivation stack (detected symbols & latest states)

− Lookahead (remaining input symbols)

17

LR Parser Construction

1. Adjust grammar

− Augmented grammar

2. Compute state machine

− Item, Handle, Closure, Goto

3. Construct parsing table

− FOLLOW-Set

18

Adjust Grammar (1)

19

Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

Introduce dedicated start symbol
(augmented grammar)

Start = Expression.
Expression = Term { ("+" | "-") Term }.
Term = Number | "(" Expression ")".

Replace EBNF repetitions
by recursion

Start = Expression.
Expression = Term | Expression ("+" | "-") Term.
Term = Number | "(" Expression ")".

Adjust Grammar (2)

20

Start = Expression.
Expression = Term | Expression ("+" | "-") Term.
Term = Number | "(" Expression ")".

Structure EBNF-alternatives and options
into multiple productions

Start = Expression.
Expression = Term.
Expression = Expression ("+" | "-") Term.
Term = Number.
Term = "(" Expression ")".

Item

▪ Item = Production with point ⚫ at right hand side

− Point denotes how far the parser has analyzed

21

Example: Expression = Expression "+" Term.

Possible items:

[Expression = ⚫ Expression "+" Term]

[Expression = Expression ⚫ "+" Term]

[Expression = Expression "+" ⚫ Term]

[Expression = Expression "+" Term ⚫]

Item with ⚫ at end is called handle =>
here we can reduce the production

Closure

▪ Transitive closure over sets of items

22

closure { [A = α ⚫ B β.] } includes [B = ⚫ γ.] to
the set, if ⚫ precedes non-terminal symbol B.
Repeatedly perform this for all items in set.
(α, β, γ are terminal or non-terminal symbols.).

Example:

closure { [Start = ⚫ Expression] } =
{ [Start = ⚫ Expression] ,

[Expression = ⚫ Term],
[Expression = ⚫ Expression "+" Term],
[Expression = ⚫ Expression "-" Term],
[Term = ⚫ Number],
[Term = ⚫ "(" Expression ")"] }.

Goto

▪ Goto for item set I and symbol X

− X is a terminal or non-terminal symbol

▪ Serves to compute state machine

23

Goto(I, X) = closure of all items [A = α X ⚫ β], if
[A = α ⚫ X β] is part of I.

Parser proceeds
with symbol X

Compute Gotos (1)

24

Start state
I0 = { [Start = ⚫ Expression],

[Expression = ⚫ Term],
[Expression = ⚫ Expression "+" Term],
[Expression = ⚫ Expression "-" Term],
[Term = ⚫ Number],
[Term = ⚫ "(" Expression ")"] }

Goto(I0, Expression) =
{ [Start = Expression ⚫],

[Expression = Expression ⚫ "+" Term],
[Expression = Expression ⚫ "-" Term] } =: I1

Goto(I0, Term) =
{ [Expression = Term ⚫] } =: I2

Goto(I0, Number) =
{ [Term = Number ⚫] } =: I3

Compute All Gotos (2)

25

Goto(I0, "(") =
{ [Term = "(" ⚫ Expression ")"],

[Expression = ⚫ Term],
[Expression = ⚫ Expression "+" Term],
[Expression = ⚫ Expression "-" Term],
[Term = ⚫ Number],
[Term = ⚫ "(" Expression ")"] } =: I4

Goto(I1, "+") =
{ [Expression = Expression "+" ⚫ Term],

[Term = ⚫ Number],
[Term = ⚫ "(" Expression ")"] } =: I5

Goto(I1, "-") =
{[Expression = Expression "-" ⚫ Term],

[Term = ⚫ Number],
[Term = ⚫ "(" Expression ")"] } =: I6

Compute All Gotos (3)

26

Goto(I4, Expression) =
{ [Term = "(" Expression ⚫ ")"],

[Expression = Expression ⚫ "+" Term],
[Expression = Expression ⚫ "-" Term] } =: I7

Goto(I4, Term) = { [Expression = Term ⚫] } = I2

Goto(I4, Number) = { [Term = Number ⚫] } = I3

Goto(I4, "(") = I4

Goto(I5, Term) =
{ [Expression = Expression "+" Term ⚫] } =: I8

Goto(I5, Number) = I3

Goto(I5, "(") = I4

Goto(I6, Term) =
{ [Expression = Expression "-" Term ⚫] } =: I9

Goto(I6, Number) = I3

Goto(I6, "(") = I4

Compute All Gotos (4)

27

Goto(I7, ")") =
{ [Term = "(" Expression ")" ⚫] } =: I10

Goto(I7, "+") = I5

Goto(I7, "-") = I6

State Machine

28

I0

I1

I2I3

I4

Expression

Term

Number

I5 I6

+ -

I8 I9

Term Term

(

I7I10)

-+

(

Number

(

Term

((

Number
Number

FOLLOW-Set

▪ FOLLOW(X) = All terminal symbols that can follow
after non-terminal symbol X.

29

FOLLOW(Expression) = { "+", "-", ")", $ }
FOLLOW(Term) = { "+", "-", ")", $ }

$ denotes
end of input

Construct Parsing Table

▪ If [Start = X ⚫] in I
(X is original start symbol)
=> ACTION(I, $): ACCEPT

▪ If [A = α ⚫] in I
=> ACTION(I, a): REDUCE for each a in FOLLOW(A)

▪ If [A = α ⚫ a β] in I, Goto(I, a) = J
=> ACTION(I, a): SHIFT, go to J

30

Parsing Table

31

N + - () $

I0 S: I3 S: I4

I1 S: I5 S: I6 A

I2 R: E = T R: E = T R: E = T R: E = T

I3 R: T = N R: T = N R: T = N R: T = N

I4 S: I3 S: I4

I5 S: I3 S: I4

I6 S: I3 S: I4

I7 S: I5 S: I6 S: I10

I8 R: E =E+T R: E =E+T R: E =E+T R: E =E+T

I9 R: E = E-T R: E = E-T R: E = E-T R: E = E-T

I10 R: T = (E) R: T = (E) R: T = (E) R: T = (E)

S: SHIFT
R: REDUCE
A: ACCEPT
otherwise ERROR

E: Expression
T: Term
N: Number

Parser Stack

▪ Stack of currently detected symbols including state

32

Stack

$ I0

$ I0 1 I3

Input

1 + 2

+ 2

Top of stack
symbol 1 with state I3

Initial stack
empty with state I0

SHIFT I3

Parsing Operations

▪ SHIFT symbol a in state I

− push (a, Goto(I, a))

▪ REDUCE X = ... with n symbols on right hand side

− n times pop()

− Look at current state I on stack

− push (X, Goto(I, X))

33

$ I0 1 I3 REDUCE Term = Number.

$ I0 Term Goto(I0, Term) = I2

$ I0 Term I2

Parsing 1 + (2 - 3)

34

Op Stack Input rest

$ I0 1+(2-3)$

S $ I0 1 I3 +(2-3)$

R $ I0 Term I2 +(2-3)$

R $ I0 Expr I1 +(2-3)$

S $ I0 Expr I1 + I5 (2-3)$

S $ I0 Expr I1 + I5 (I4 2-3)$

S $ I0 Expr I1 + I5 (I4 2 I3 -3)$

R $ I0 Expr I1 + I5 (I4 Term I2 -3)$

R $ I0 Expr I1 + I5 (I4 Expr I7 -3)$

S $ I0 Expr I1 + I5 (I4 Expr I7 - I6 3)$

S $ I0 Expr I1 + I5 (I4 Expr I7 - I6 3 I3)$

R $ I0 Expr I1 + I5 (I4 Expr I7 - I6 Term I9)$

R $ I0 Expr I1 + I5 (I4 Expr I7)$

S $ I0 Expr I1 + I5 (I4 Expr I7) I10 $

R $ I0 Expr I1 + I5 Term I8 $

R $ I0 Expr I1 $
ACCEPT

Discussion

▪ LL(k) parser is often sufficient in practice

− Grammar can usually be adjusted to it

▪ C++, Java and C# have hand-crafted LL-parser

− Although grammar is not designed for LL

− Need to rewrite grammar at some places

− Or require larger lookahead

▪ LALR(k) is common in parser generators

− yacc, bison

▪ But also LL(k) is regaining importance

− AntLR, Coco/R

35

Review: Learning Goals

✓ Understand how a bottom-up parser works

✓ Know how to generate the LR parsing table

36

Further Reading

▪ Dragon Book, Chapter 4 (Syntax Analysis)

− Sections 4.5 – 4.6 (Bottom-Up Parser, SLR)

▪ Optional, if interested

− Sections 4.7 – 4.8 (LR and LALR)

− Section 4.9 (Yacc Generator)

37

Course 142A Compilers & Interpreters
Semantic Analysis

Lecture Week 3, Wednesday

Prof. Dr. Luc Bläser

Last Lecture - Quiz

39

Is the program syntactically correct?
What does the parser return?

boolean x;
if (x + x) {

int x;
x = 0;

}

Syntactic Analysis

▪ Context-free grammar

▪ Parser returns syntax tree

40

Variable
boolean x

IfStatement

Binary-
Expression

Identifier x Identifier x

LocalDecl.
int x

Assignment

Identifier x
IntegerLiteral

0

Semantic Analysis

▪ Context-sensitive rules

▪ Types, declarations etc.

41

boolean x;
if (x + x) {
int x;
x = 0;

}

boolean cannot
be added

Multiple
declaration

Today’s Content

▪ Semantic checker

▪ Symbol table

▪ Name resolution

▪ Type checks

42

Learning Goals

▪ Understand the purpose and functionality of the
semantic analysis

▪ Understand the design and construction of a symbol
table

▪ Know how to implement type resolution and type
checks

43

Compiler Frontend

44

Lexer / Scanner

Parser

Semantic Checker

Program text

Token stream

Syntax tree

Intermediate representation

Lexical analysis

Syntactic analysis

Semantic analysis

(optional optimization)

Our Focus: Semantic Checker

45

=

x +

1 3

int x;=

x +

1 3

Semantic Checker

Syntax tree

Intermediate representation

Semantic Checker

▪ Cares about the semantic analysis

▪ Input: Syntax tree

− Concrete or abstract

▪ Output: Intermediate representation

− Abstract syntax tree + symbol table

46

Tasks of a Semantic Checker

▪ Check whether the program conforms with the
semantic language rules

▪ Transform the program into a form that can be
easily processed by code generation

47

Declarations

48

class Counter {
int number;

void set(int value) {
int temp;
temp = number;
number = value;
writeInt(temp);

}

void increase() {
number = number + 1;

}
}

Declarations appear in hierarchical scopes

Symbol Table

▪ Data structure for managing declarations

▪ Reflects hierarchical program scopes

49

class Counter

number variable int

set method

increase method

method set

value parameter int

temp variable int

method increase

Global Scope

Global Scope

▪ Multiple classes in program

50

class X {
Y ref;

}

class Y {
int x;

}

class Z {
Z sub;

}

class X

ref var Y

class Y

x var int

class Z

sub var Z

Shadowing

▪ Declaration in inner scopes shadow equally named
declaration in other scopes

51

class C {
int x;

void m1() {
int x;

}

void m2() {
boolean x;

}
}

Verdecken
äusseres x

Shadow
outer x

Scopes of Local Variables

52

void m(int x) {
int y;
y = x;
while (y > 0) {
writeInt(y);
int z;
z = y;
y = z - 1;

}
}

Scope
of y

Scope
of z

Shadowing within same-method-scopes are usually forbidden

Symbol Table Design

53

{abstract} Symbol

scope: Symbol
identifier: string

GlobalScope TypeSymbol
*

MethodSymbol VariableSymbol

*

*
ClassSymbol

*

More Detailed Relations

54

TypeSymbol

MethodSymbol VariableSymbol

*

*

ClassSymbol
*

fields

parameters

localVariables *

typereturnType

Design Aspects (1)

▪ Type information for variable symbol

− Initially unresolved (identifier)

▪ Additional information

− Class: Base class

55

Design Aspects (2)

▪ Local variables

− Remember declaration range (statements)

▪ Extended variable design:

56

{abstract}
VariableSymbol

FieldSymbol LocalSymbol

visibleIn:
Set<Statement>

ParameterSymbol

Design Aspects (3)

▪ Extended type design:

− Classes

− Inbuilt types (int, boolean, string)

− Arrays

57

{abstract}
TypeSymbol

ClassSymbol InbuiltType ArrayType

elementType

Special Cases

▪ Predefined types: int, boolean, string

− Insert as inbuilt types to global scope

▪ Predefined constants: true, false, null, this

− true, false, null as constants in global scope

− null is poly-type (compatible to all reference types)

− “this” needs special handling in the analysis

▪ Predefined methods: writeString etc.

▪ Predefined variables: length

− Only for array types

− Read-only

58

Approach

▪ Construct symbol table

▪ Resolve types in table

▪ Resolve declarations in AST

▪ Resolve types in AST

59

1. Construct Symbol Table

▪ Traverse AST

− Start in global scope

− For each class, method, parameter, variable

• Insert symbol in surrounding scope

− Explicit traversal or with visitor

60

Forward references => do not yet
resolve type names or designators

2. Resolve Types in Table

▪ For variables, parameters, return type etc.

▪ Search by identifier in symbol table

61

VariableSymbol

VariableSymbol ClassSymbol

identifier = "T"

unresolved

resolved

T x;

Name Resolution

▪ Question: "Which symbol declares identifier "id"?

62

Global Scope

Class A

Method B

1. Search inner-most
scope

2. Search next outer scope

3. Search outer-most scope

Search Function

63

Symbol find(Symbol scope, String identifier) {
if (scope == null) {
return null;

}
for (Symbol declaration : scope.allDeclarations()) {
if (declaration.getIdentifier().equals(identifier)) {

return declaration;
}

}
return find(scope.getScope(), identifier);

}

E.g. variables &
methods inside class

Recursive search in
next outer scope

3. Resolve Declarations in AST

▪ Traverse execution code in AST

− Method body

▪ Resolve each designator

− Associate declaration

64

Assignment

BasicDesignator
b

BinaryExpression
>

BasicDesignator
x

Literal
0

VariableSymbol

identifier = "b"
type = "boolean"

VariableSymbol

identifier = "x"
type = "int"

4. Resolve Types in AST

▪ Associate type for each expression

− Literal: Predefined type

− Designator: Type of declaration

− Unary/BinaryExpression: Result of operator

65

Assignment

BasicDesignator
b

BinaryExpression
>

BasicDesignator
x

Literal
0

InbuiltType

"boolean"

InbuiltType

"int"

Resolution Procedure

▪ Post order traversal

− First resolve types in lower nodes

▪ We can leave AST unmodified

− Use maps in symbol table

• DesignatorNode -> Symbol (declaration)

• ExpressionNode -> TypeSymbol (type)

66

Type Resolution per Visitor

67

@Override

public void visit(BinaryExpressionNode node) {

Visitor.super.visit(node); // post-order traversal

…

if (node.getOperator() == Operator.PLUS) {

symbolTable.fixType(node, GlobalScope.INT_TYPE);

}

…

}

All Resolved

68

Which checks do we have
to perform now?

Semantic Checks

▪ All designators refer to variables/methods

▪ Types match on operators

▪ Compatible types on assignments

▪ Arguments matches parameters

▪ Conditions in if, while are boolean

▪ Return expression matches

▪ No multiple same declarations

▪ No identifier is a reserved keyword

▪ Exactly one main-method

▪ Array length is read-only

▪ More according language report…

69

Type rules

Types Match on Operators

70

1 + true;

!3

1 && 2

array == null

Visitor Extension

71

@Override

public void visit(BinaryExpressionNode node) {

Visitor.super.visit(node); // post-order traversal

var leftType = symbolTable.findType(node.getLeft());

var rightType = symbolTable.findType(node.getRight());

if (node.Operator == Operator.PLUS) {

if (leftType != GlobalScope.INT_TYPE ||

rightType != GlobalScope.INT_TYPE) {

error();

}

symbolTable.fixType(node, GlobalScope.INT_TYPE);

}

…

}

Type-Compatibility on Assignments

▪ Same type left and right

− int x; x = 12;

▪ Null assignment

− int[] x; x = null;

− For all reference types (strings, arrays, classes)

▪ OO type polymorphism

− Vehicle v; v = new Car();

− If Car is a sub-class of Vehicle

72

Argument List Matching Parameter List

▪ Uniquely defined static target method

▪ #arguments = #parameters

▪ nth argument is type-compatible to nth parameter

73

start(12345, true, myRefA)

void start(int x, boolean b, A a) {
}

Compatible types

How much would overloading complicate this?

No Multiple Same Declarations

▪ In same scope

74

int x;
boolean x;

int f;
void f() { }

void f() {}
void f(int x) {}

Allowed with overloading

In Java allowed
but not in C++ and C#

Reserved Keywords

▪ Identifiers cannot be named like keywords

− If not yet prevented by lexer

75

int int;

boolean true;

class void {
}

Additional Checks

▪ No exit without return (except void)

▪ Reading uninitialized variables

▪ Null dereferencing

▪ Invalid array index

▪ Division by zero

▪ Out of memory on new()

76

Not decidable in general
=> Static analysis
=> Runtime checks

Intermediate Representation

▪ Symbol table with resolved AST yields intermediate
representation for the compiler backend

− Code generation and optimization

77

Topic of next week

Review: Learning Goals

✓ Understand the purpose and functionality of the
semantic analysis

✓ Understand the design and construction of a symbol
table

✓ Know how to implement type resolution and type
checks

78

Further Reading

▪ Dragon Book, selected sections

− Section 2.7 (Symbol Tables)

− Section 6.3 (Types and Declarations)

− Section 6.5 (Type Checking)

79

