
Course 142A Compilers & Interpreters
Code Analysis

Lecture Week 5

Prof. Dr. Luc Bläser

Last Week - Quiz

2

How could this be optimized?

a = 1;
if (…) {

a = a + 1;
b = a;

} else {
b = 2;

}
c = b + 1;
writeInt(c);

Constant Propagation

3

a = 1;
if (…) {

a = a + 1;
b = a;

} else {
b = 2;

}
c = b + 1;
writeInt(c);

a = 1;
if (…) {

a = 2;
b = 2;

} else {
b = 2;

}
c = 3;
writeInt(c);

Copy Propagation

4

…
c = 3;
writeInt(c);

…
c = 3;
writeInt(3);

Dead Code Elimination

5

a = 1;
if (…) {

a = 2;
b = 2;

} else {
b = 2;

}
c = 3;
writeInt(3);

writeInt(3);

How to Determine Optimizations?

▪ Static code analysis = at compile time

− Statement about all possible runtime cases

▪ Facilitates optimizations

− Constant propagation

− Dead code elimination

− …

▪ But also error detection

− Reading uninitialized variables

− Certainly failing runtime checks

− …

6

Today’s Topic

▪ Code Analysis

▪ Control Flow Graphs

▪ Dataflow Analysis

▪ Use Cases

7

Learning Goals

▪ Understand dataflow analysis as a generic code
analysis method

▪ Know how to apply it for error detection and
optimizations in a compiler

8

First Analysis Example

9

int a;
int b;
int c;
a = 10;
if (...) {

b = a;
}
c = a + b + c;

Where do we read uninitialized variables?
How to detect this?

Analyze All Paths

10

a = 10

if (...)

b = a

c = a + b + c

b and c uninitialized

b and c uninitialized

b and c uninitialized

c uninitialized

a initialized
b possibly uninitialized
c certainly uninitialized

int a; int b; int c;

a, b, and c uninitialized

Second Analysis Example

11

a = 1;
if (...) {

b = a + 1;
} else {

b = 2;
}
c = a + b;

Is the value of c constant?
If yes, what is its value?

Analyze All Paths

12

b = 2

a = 1

b = a + 1

c = a + b

if (...)

a == 1

a == 1a == 1

a == 1, b == 2 a == 1, b == 2

a and b are the
same on all paths
=> c == 3

Small Modification

13

a = 1;
while (...) {

if (...) {
b = a + 1;

} else {
b = 2;

}
c = a + b;
a = a + 1;

}

Is c still constant?

Analyze All Paths

14

b = 2

while (...)

b = a + 1

c = a + b

if (...)

a == 1

a == 1a == 1

a == 1, b == 2 a == 1, b == 2

a = a + 1

a = 1

a == 1, b == 2, c == 3

a == 1

Analyze All Paths

15

b = 2

while (...)

b = a + 1

c = a + b

if (...)

a == ?? (1 or 2)

a = a + 1

a = 1

a == 2

a == 1

a == 2

Analyze All Paths

16

b = 2

while (...)

b = a + 1

c = a + b

if (...)

a == ??

a == ??a == ??

a == ??, b == ?? a == ??, b == 2

a = a + 1

a = 1

a and b not always
constant
=> c neither

Our Approach

▪ Construct a Control Flow Graph

− Graph showing program paths like on previous slides

▪ Dataflow Analysis

− Propagate information through graph, until it is stable

17

Control Flow Graph

▪ Representation of all possible program paths

− Typically inside a method (intra-method)

▪ Node = Basic Block

− Straight code section

− Entry only at the beginning: No label in the middle

− Exit only at the end: No branch in the middle

▪ Edge

− Conditional or unconditional branch

18

Basic Blocks

▪ Delimited by branch entry and exit

19

a = 1;
b = -a;
if (a <= b) {

c = b;
d = 2;

}
d = d + c;
e = d;

Control Flow Graph (CFG)

▪ Connected basic blocks according to possible
branches

20

a = 1;
b = -a;
a <= b

c = b;
d = 2;

d = d + c;
e = d;

CFG for If-Statement

21

A1;
if (A2) {
B;

}
C;

A1
A2

B

C

A1;
if (A2) {
B;

} else {
C;

}
D;

A1
A2

C

D

B

CFG for While-Statement

22

A;
while (B) {
C;

}
D;

B

C

D

A

Dataflow Analysis

▪ Fixpoint iteration over Control Flow Graph

− Propagate analysis information (state) through blocks

− Until state is stable for each block (fixpoint)

▪ Dataflow Analysis is generic

− Applicable for various use cases

− State will be defined per use case

23

State

▪ Input state und output state per basic block

▪ Analysis information before and after the block

24

Basic Block B

Input State in(B)

Output State out(B)

Transfer

▪ Mapping per block: Input State -> Output State

▪ Defines block’s effect on analysis information

25

Basic Block B

Input State in(B)

Output State out(B)

Transfer(B)

Analysis Example

▪ State = Set of uninitialized variables

▪ Transfer = Add variable declarations, remove
assigned variables

26

int c;
a = 2

in(B) = { a, b }

out(B) = { b, c }

Transfer(B) =
in(B) U { c } \ { a}

Gen and Kill Set

▪ Transfer can be described by two sets

▪ Gen Set: Elements to add

− Example: Variable declarations

▪ Kill Set: Elements to remove

− Example: Assigned variables

27

Transfer(B) = in(B) U gen(B) \ kill(B)

Join

▪ Combine output state of predecessors to input state
of the successor

28

B

out(AN)

A1 AN
...

out(A1)

in(B) = Join(out(A1), ..., out(AN))

Analysis Example

▪ Join = Union set of predecessors

29

...

out(A2) = { b }

int a, b;
b = 1

int a, b;
a = 2

out(A1) = { a }

in(B) = { a } U { b } = { a, b }

a or b are possibly
uninitialized

Dataflow Analysis

30

boolean stable;
do {

stable = true;
for (var block : graph.allBlocks()) {

in[block] = join(block.predecessors().outStates());
var oldOut = out[block];
out[block] = transfer(in[block]);
if (!out[block].equals(oldOut)) {

stable = false;
}

}
} while (!stable);

Fixpoint iteration

Uninitialized Variable Analysis

31

a = 1

b = a

c = b

{ }

{ }

{ }

{ }

{ }

Initialize
dataflow

int a, b, c

{ }

Uninitialized Variable Analysis

32

a = 1

b = a

c = b

{ a, b, c }

{ b, c }

{ b }

{ b, c }

{ c }

First round

int a, b, c

{ }

Changes =>
Not yet stable

Uninitialized Variable Analysis

33

a = 1

b = a

c = b

{ a, b, c }

{ b, c }

{ b }

{ b, c }

{ c }

Second round

int a, b, c

{ }

No changes =>
stable

Join({a, b, c}, {c}) =
{a, b, c}

{ c }

Results After Dataflow Analysis

▪ Use stable input or output states for block properties

▪ E.g. compiler error for uninitialized reads

34

c = b

in = { b, c }

Error: b is potentially
uninitialized

Discussion

▪ Conservative analysis

− Considers all possible syntactic paths

▪ Context-free analysis

− All paths are selected, regardless of their condition

▪ Error reporting is also conservative

− It exists at least one path where error could occur

▪ Fixpoint iteration needs to terminate

− E.g. if set grows monotonically by joins

35

Error <=> potentially uninitialized
No error <=> certainly initialized

Revisiting Constant Propagation

▪ Example of last week

36

a = 1;
if (...) {

a = a + 1;
b = a;

} else {
b = 2;

}
c = b + 1;

c is certainly 3

Configuring the Analysis

▪ State: Variables with their associated constant value

− { a == const1, b == const2, ... }

▪ Transfer for a = E

− Kill: Remove a == ... (if existing)

− Gen: If E is constant, add a == E

▪ Join(X, Y) = X ∩ Y

− Intersection

37

Constant Propagation: Transfer

38

a = a + 1
b = a

{ a == 1 }

{ a == 2, b == 2 }

Constant Propagation: Join

39

...

a = 1
b = 2
c = 3

a = 0
b = 2
d = 3

{ a == 1, b == 2, c == 3 } { a == 0, b == 2, d == 3 }

{ b == 2 }

Only b == 2 is guaranteed
for all predecessor paths

Constant Propagation Example

40

a = 1

a = a + 1
b = a

b = 2

c = b + 1

{}

{ a == 1 }

{ a == 2, b == 2 } { a == 1, b == 2 }

{ b == 2, c == 3 }

{ b == 2 }

Review: Learning Goals

✓ Understand dataflow analysis as a generic code
analysis method

✓ Know how to apply it for error detection and
optimizations in a compiler

41

Continued in the next lecture

Further Reading

▪ Dragon Book, Code Optimization

− Section 9.2-9.3: Dataflow analysis

− Section 9.4: Constant propagation

▪ Optional, if interested

− F. Nielson, H. R. Nielson, C. Hankin. Principles of Program
Analysis, Springer, 2004.

42

Course 142A Compilers & Interpreters
Code Analysis Continued

Lecture Week 5, Wednesday

Prof. Dr. Luc Bläser

Quiz - Last Lecture

44

a = 1;
while (...) {

if (...) {
a = a + 1;
b = a;

} else {
b = 2;

}
c = b + 1;

}

How do we configure the dataflow analysis?
- State, Transfer, Join

Constant Propagation

Today’s Agenda

▪ Continue Dataflow Analysis

▪ Midterm Q&A

45

Constant Propagation Scenario

46

a = 1

a = a + 1
b = a

b = 2

c = b + 1

{}

{ a == 1 }

{ a == 2, b == 2 } { a == 1, b == 2 }

{ b == 2, c == 3 }

{ b == 2 }

Dataflow Scenario

47

a = 1

a = a + 1
b = a

b = 2

c = b + 1

{}

{ a == 1 }

{ a == 2, b == 2 } { a = 1, b = 2 }

{ b == 2, c == 3 }

{ b == 2 }

{ }

Join of { a == 1 } with
{ b == 2, c == 3 }

{ }

Dataflow Scenario

48

a = 1

a = a + 1
b = a

b = 2

c = b + 1

{}

{ a == 1 }

{ } { b == 2 }

{ }

{ }

{ }{ }

c is not constant

Backwards Analysis

▪ Dataflow analysis can also run backwards: From
successors to predecessors

▪ Transfer: Out State -> In State

▪ Join: In states of successors -> out state of
predecessor

49

Example: Live Variables

▪ Variables that may be used later

▪ Eliminate non-live variables (=dead)

50

a = b;
b = 2;
if (...) {

b = a;
a = 1;

}
writeInt(a);

b is hereafter
no longer used

Live Variable Configuration

▪ Backwards direction

▪ State: Live variables (variables that may be read)

▪ Transfer for a = b ⚫ c:

− Gen: If a is alive in succeeding code, so are also b and c

− Kill: a is no longer alive

▪ Join(X, Y) = X U Y

51

Backwards Analysis

52

a = b;
b = 2;

b = a;
a = 1;

writeInt(a)

{ a }

{ }

{ a }

{ b }

a is read => alive

a becomes dead

Join = union set

b remains dead

b becomes alive, a becomes dead

b remains dead

Dead Code Elimination

▪ Remove assignments to non-live (dead) variables

53

a = b;
b = 2;
if (...) {

b = a;
a = 1;

}
writeInt(a)

a = b;
if (...) {

a = 1;
}
writeInt(a)

Summary

▪ Dataflow is generic

▪ Allows different configurations

54

Join = union Join = intersection

Forward Uninitialized
Variables

Constant
Propagation

Backward Live
Variables

(Busy Expressions)

Expressions, that are
computed on all paths

Further Reading

▪ Dragon Book, Code Optimization

− Section 9.2-9.3: Dataflow analysis

− Section 9.4: Constant propagation

▪ Optional, if interested

− F. Nielson, H. R. Nielson, C. Hankin. Principles of Program
Analysis, Springer, 2004.

55

