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Last Lecture - Quiz
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What was the purpose of the type tag until now?

typeTag

Type 
descriptorObject



Type Tag: Purpose

Lookup type descriptor

▪ Ancestor table for type test and cast

▪ Virtual method table for dynamic dispatch

▪ Metadata for the interpreter (field/array types)

New:

▪ Pointer offsets for garbage collection
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Today’s Topics

▪ Memory Safety

▪ Garbage Collection

▪ Mark & Sweep

▪ GC Metadata
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Learning Goals

▪ Understand the purpose and functionality of a 
Garbage Collector

▪ Know how to implement a simple Mark & Sweep GC 
for your runtime system
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Memory Deallocation

▪ Metadata

− No deallocation needed

▪ Stack

− Return from method

▪ Heap

− Object deallocation
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Do we need object deallocation at all?
If yes, how can we do this?

Our focus



Explicit Deletion

▪ delete-statement to deallocate objects

− Opposite of new-statement

− Offered in e.g. C/C++/Pascal
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x = new T();
...
delete x;

What is the problem with this?



Problems of Explicit Deletion

▪ Dangling pointers

− Reference to an already deleted object

▪ Memory leaks

− Orphan objects that cannot be removed
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Serious memory errors



Dangling Pointer

▪ Reference to an object that has already been 
deleted
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x = new T();
y = x;
...
delete x;

deleted

Dangling 
pointer

y

Why is this dangerous?



Dangling Pointer Problem

▪ Points to a hole or wrong object in heap

▪ Read unauthorized memory (security issue)

▪ Overwrite unrelated memory (safety/security issue)
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y

hole

Heap

y

Heap

New 
different 
object



Memory Leak

▪ Unneeded object that is undeletable

▪ There exists no accessible reference to it
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x = new T();
x = null;
...

Memory 
leak

x

Undeletable garbage fills the heap



Garbage Collection

▪ Runtime system takes care of automatic reclamation 
of garbage

▪ Garbage = objects that are unreachable (and 
therefore no longer used)
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Goal: Memory safety
• No dangling pointers
• No memory leaks



Reference Counting

▪ Reference counter rc per object 

− Number of incoming references
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Object rc = 3 rc == 0 => Garbage

Inverse does not apply



Expensive Updates

▪ On reference assignments (here both non-null)

14

x = y;

x y

rc rc

y.rc++;
x.rc--;
if (x.rc == 0) {

delete x;
}
x = y;

Atomic increment/decrement
in the presence of concurrency

Actual code:



Cycles

▪ Cyclic object structures will never become garbage 
with reference counting

15

rc = 1 rc = 1 

Memory leak



Reference Counting

▪ Advantage

− Immediate deallocation

▪ Disadvantage

− Not suited for cycles

− Slow

▪ Applied in C++ (smart pointers), Objective C, Swift

− Provisional solution with weak pointers on cycles

− Problem remain: Memory leaks and premature deletes

▪ Only suited for acyclic memory
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Garbage Collector (GC)

▪ Runtime system analyzes heap and deletes garbage

▪ Garbage = Unreachable objects from the program
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Running 
program

Garbage

Cyclic 
garbage



Transitive Reachability

▪ Keep objects that could be accessed by the program 
in the future

▪ All directly or indirectly reachable objects via 
references from the program

▪ Starting from root set
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Root set

...

reachable objects = non-garbage



Root Set

▪ References in static variables (if applicable)

▪ References on call stack (activation frames)

▪ References in registers (if applicable)

19



Mark & Sweep Algorithm

▪ Mark phase

− Mark all reachable objects

▪ Sweep phase

− Delete all unmarked objects
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void collect() {
mark();
sweep();

}



Example: GC
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Root set



Example: Mark Phase
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Root set marked objects
= Non-Garbage

not marked
= Garbage



Example: Sweep Phase
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Root set

Free garbage

Unmark non-garbage



Mark Phase: Implementation
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void mark() {
for (var root : getRootSet()) {  
traverse(root);

}
}

Enumerable 
root set

traverse reachable 
objects



Depth-First Traversal
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void traverse(Pointer current) {
if (current != null && !isMarked(current)) {
setMark(current);
for (var next : getPointers(current)) {

traverse(next);
}

}
} Enumerate 

references in object

Mark flag in 
object layout



Sweep: Approach

▪ Linear scan over entire heap, all blocks
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HEAP_START

HEAP_END

marked object

unmarked block



Sweep: Implementation
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void sweep() {
var current = HEAP_START;
while (current < HEAP_SIZE) {

if (!isMarked(current)) {
free(current);

} 
clearMark(current);
current += heap.getBlockSize(current);

}
}

Register free block 
in heap



Detailed Aspects
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What questions remain open?



Open Questions

General

▪ When does the GC run?

▪ Can the program run during GC?

Mark phase

▪ How to collect the root set?

▪ Where are the references inside an object?

Sweep phase

▪ How to determine the block size?

▪ Where to pass the free blocks?
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Point of Execution

▪ Delayed garbage collection

− Garbage is not immediately detected and freed

▪ GC runs at latest when the heap is full

− Check in the allocate-method

▪ Possibly earlier for prophylactic reasons

− In particular with finalizers (discussed next lecture)
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Stop & Go

▪ GC runs sequentially and exclusively

▪ Mutator = Productive program

▪ Mutator is interrupted during GC
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Mutator GC Mutator GC Mutator

Time axis:

Other mechanism: Next lecture



Root Set Collection

Pointers on call stack

▪ Pointers in parameters

▪ Pointers in locals

▪ Pointers on evaluation stack

▪ “this”-reference

(no static fields or registers in our case)
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Root Set Collection
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Iterable<Pointer> getRootSet(CallStack callStack) {
var list = new ArrayList<Pointer>();
for (var frame : callStack) {
collectPointers(frame.getParameters());
collectPointers(frame.getLocals());
collectPointers(frame.getEvaluationStack().toArray());
list.add(frame.getThisReference());

}
return list;

}



Mark Flag
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Type Descriptor

MyClassObject Block

Mark Flag 
for GC

blockSize

via map
typeTag



Pointers in Object
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How can we figure out the pointer offsets in the object?

Class Descriptor

blockSize

typeTag

Pointer

Pointer

offset1

offset2

allFields



Pointers in Object
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Iterable<Pointer> getPointers(Pointer current) {
var list = new ArrayList<Pointer>();
var descriptor = heap.getDescriptor(current);
var fields = ((ClassDescriptor)descriptor).getAllFields();
for (var index = 0; index < fields.length; index++) {
if (isPointerType(fields[index].getType())) {

var value = heap.readField(current, index);
if (value != null) {
list.add((Pointer) value);

}
}

}
return list;

}
Consider arrays additionally!

isPointerType() = class or 
array descriptor



Review: Learning Goals

✓ Understand the purpose and functionality of a 
Garbage Collector

✓ Know how to implement a simple Mark & Sweep GC 
for your runtime system

37



Further Reading

▪ Dragon Book, Garbage Collection

− Section 7.5-7.6.2: Mark and sweep

▪ Optional, if interested

− R. Jones, A. Hosking und E. Moss. The Garbage Collection 
Handbook. Chapman & Hall, 2011
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Last Lecture - Quiz
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void sweep() {
var current = HEAP_START;
while (current < HEAP_SIZE) {

if (!isMarked(current)) {
free(current);

} 
clearMark(current);
current += heap.getBlockSize(current);

}
}

What should we do with the free blocks?



Sweep

▪ Remember the free blocks for later re-allocation
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HEAP_START

HEAP_END

marked object

unmarked block



Today’s Topics

▪ Free Lists

▪ Advanced GC Topics
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Learning Goals

▪ Understand how free heap blocks are managed

▪ Gain principal knowledge of advanced GC 
mechanisms
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Free List

▪ Linearly linked list of free blocks
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freeList



New Heap Allocation

▪ Traverse free list until a fitting block is found

▪ Left-over of block can be re-inserted in free list
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freeList freeList

Allocate



Heap Block Layouts
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Free blockOccupied block

Sweep requires symmetric block header (mark/size)

linking
free blocks

Type
descriptor

size

type_tag

Mark

size

next



Free List Strategies

▪ First Fit

− No sorting

− Search for first fitting block

▪ Best Fit

− Ascending sorting by size

− Useless small fragments

▪ Worst Fit

− Descending sorting by size

− Find fitting block immediately
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Segregated Free List

▪ Multiple free lists with different size classes
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128..196

196..256

Size class

64..128

......

Overflow 
>= 32 KB



External Fragmentation

▪ Many small holes in heap due to allocate & free

− Larger allocation may no longer fit into a hole

− Although sum of free blocks would be sufficient
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Desired allocation



Other Possibilities

▪ Merge neighbor free blocks

− Easily possible during sweep phase

▪ Buddy System

− Discrete block sizes ordered by address

− Exponential sizes (power of 2, Fibonacci)

− Very fast merging & allocation & freeing

− But huge internal fragmentation (unusable rests)

▪ Compacting Garbage Collection

50



Compacting GC

▪ Also called Mark & Copy GC

▪ Allocation at heap end (super-efficient)

▪ GC moves alive objects together

▪ Need to update all references on object moving
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Compacting GC
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Free pointer

allocateFree pointer

GCFree pointer



Other Advanced GC Concepts

53

Incremental GC

Finalizers



Finalizer

▪ Method that runs before deletion of an object

− Final cleanup: Close connections, dispose external 
resources etc.

▪ Initiated by GC when object is identified as garbage
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class Block {
@Override
protected void finalize() {

...
}

}
Java finalizer



Separate Finalization

▪ Finalizer is not executed in GC phase, but only later

▪ Reasons:

− Finalizer can take long time
=> blocks GC 

− Finalizer can allocate new object
=> corrupts GC

− Programming bugs in finalizer
=> crashes GC

− Finalizer can make garbage alive again
=> resurrection
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Resurrection

▪ Finalizer can make an object alive again, after it has 
been garbage

▪ Not only own object but also indirectly other 
objects can resurrect

56

How is this possible?



Resurrection
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finalizer:
other.ref = this;

Garbage
Root set

Non-garbage

Resurrected

Root set

Resurrected

other



Finalizer Internals

▪ finalizer list = registered finalizers

▪ freachable list = pending finalizers to be executed
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A

C

B

finalizer list

A

B

freachable

empty



Finalizer Internals

▪ Garbage with finalizer is registered to freachable
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A

C

B

finalizer list

A

B

A

C

B

finalizer list

A

freachable

B

Garbage



Finalizer Internals

▪ Insertion in freachable effects resurrection => new 
GC phase is necessary

60

A

C

B

finalizer list

A

A

C

B

finalizer list

A

freachable

B

freachable

B

resurrected



Finalizer Internals

▪ Finalizer runs later => freachable entry is removed

▪ New GC run is necessary to finally free the object

61

A

C

B

finalizer list

A

freachable

empty

A

C

B A



Finalizer Impact

▪ GC needs 2 mark phases

− Mark and detect garbage with finalizer

− Mark again starting from freachable, then sweep

▪ Object with finalizer needs at least 2 GC runs until 
deletion

− Free memory may not be reclaimed fast enough
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System.gc();
System.runFinalization();
System.gc();



Finalizer Programming Aspects

▪ Order of finalizers is undefined

▪ Finalizer can run arbitrarily delayed

▪ Finalizer are concurrent to main program

− Separate thread or arbitrary interleaving

▪ Does the finalizer run again after resurrection?

− Not in Java
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Incremental GC

▪ Stop & Go GC may cause too long interrupts

▪ Goal: Perform GC in smaller steps
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Generational GC

Partitioned GC

… and many more …



Generational GC

▪ Time mirror heuristics

− Young objects  short expected lifetime

− Old object  long expected lifetime

▪ 3 generations
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Age Generation GC frequency GC pause

Young G0 High Short

Medium G1 Medium Medium

Old G2 Low Long



Heap with Generations
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G0

G1

G2

Additional root set for G0: All references pointing from G1 or G2 into G0



C

D

Collecting G0
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C

D

A

B

G0

G1

G2

B

G2

G1
G0

A



Root Sets with Generations

▪ References from old to new generations

− Additional root set to new generations

▪ Write barriers: Detecting references writes in old 
generations

− Software: Code instrumentation

− Hardware: Read-only page protection => page fault

▪ GC on old generations must include new 
generations

− G1 includes G0, G2 collection involves entire heap
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Java: G1 Partitioned GC

▪ Organize heap in partitions

− Goal: Short GC interruptions

▪ Concurrent marking with snapshots

− Detect relevant concurrent updates

▪ Focus GC on partitions with most inner garbage 
(“garbage first”)

− Evacuate alive objects in new partition

▪ Problem: cyclic garbage across partitions

− Still requires full GC (“stop the world”)
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Partitioned GC
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GC focus (most garbage)



Partitioned GC

71



Partitioned GC
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Free partition

Free partition



Review: Learning Goals

✓ Understand how free heap blocks are managed

✓ Gain principal knowledge of advanced GC 
mechanisms
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Further Reading

▪ Dragon Book, Garbage Collection
− Section 7.6.4-7.6.5: Mark and compact, mark and copy

− Section 7.7.4: Generational GC

▪ Optional, if interested
− R. Jones, A. Hosking und E. Moss. The Garbage Collection 

Handbook. Chapman & Hall, 2011

− Java G1 (Garbage First) GC
• http://www.oracle.com/technetwork/tutorials/tutorials-

1876574.html

− Jeffrey Richter. Garbage Collection: Automatic Memory 
Management in .NET, MSDN Magazine, Nov. & Dec. 2000

• Finalizer, Weak References, Compacting GC
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http://www.oracle.com/technetwork/tutorials/tutorials-1876574.html

