
Course 142A Compilers & Interpreters
Garbage Collection

Lecture Week 8

Prof. Dr. Luc Bläser

Last Lecture - Quiz

2

What was the purpose of the type tag until now?

typeTag

Type
descriptorObject

Type Tag: Purpose

Lookup type descriptor

▪ Ancestor table for type test and cast

▪ Virtual method table for dynamic dispatch

▪ Metadata for the interpreter (field/array types)

New:

▪ Pointer offsets for garbage collection

3

Today’s Topics

▪ Memory Safety

▪ Garbage Collection

▪ Mark & Sweep

▪ GC Metadata

4

Learning Goals

▪ Understand the purpose and functionality of a
Garbage Collector

▪ Know how to implement a simple Mark & Sweep GC
for your runtime system

5

Memory Deallocation

▪ Metadata

− No deallocation needed

▪ Stack

− Return from method

▪ Heap

− Object deallocation

6

Do we need object deallocation at all?
If yes, how can we do this?

Our focus

Explicit Deletion

▪ delete-statement to deallocate objects

− Opposite of new-statement

− Offered in e.g. C/C++/Pascal

7

x = new T();
...
delete x;

What is the problem with this?

Problems of Explicit Deletion

▪ Dangling pointers

− Reference to an already deleted object

▪ Memory leaks

− Orphan objects that cannot be removed

8

Serious memory errors

Dangling Pointer

▪ Reference to an object that has already been
deleted

9

x = new T();
y = x;
...
delete x;

deleted

Dangling
pointer

y

Why is this dangerous?

Dangling Pointer Problem

▪ Points to a hole or wrong object in heap

▪ Read unauthorized memory (security issue)

▪ Overwrite unrelated memory (safety/security issue)

10

y

hole

Heap

y

Heap

New
different
object

Memory Leak

▪ Unneeded object that is undeletable

▪ There exists no accessible reference to it

11

x = new T();
x = null;
...

Memory
leak

x

Undeletable garbage fills the heap

Garbage Collection

▪ Runtime system takes care of automatic reclamation
of garbage

▪ Garbage = objects that are unreachable (and
therefore no longer used)

12

Goal: Memory safety
• No dangling pointers
• No memory leaks

Reference Counting

▪ Reference counter rc per object

− Number of incoming references

13

Object rc = 3 rc == 0 => Garbage

Inverse does not apply

Expensive Updates

▪ On reference assignments (here both non-null)

14

x = y;

x y

rc rc

y.rc++;
x.rc--;
if (x.rc == 0) {

delete x;
}
x = y;

Atomic increment/decrement
in the presence of concurrency

Actual code:

Cycles

▪ Cyclic object structures will never become garbage
with reference counting

15

rc = 1 rc = 1

Memory leak

Reference Counting

▪ Advantage

− Immediate deallocation

▪ Disadvantage

− Not suited for cycles

− Slow

▪ Applied in C++ (smart pointers), Objective C, Swift

− Provisional solution with weak pointers on cycles

− Problem remain: Memory leaks and premature deletes

▪ Only suited for acyclic memory

16

Garbage Collector (GC)

▪ Runtime system analyzes heap and deletes garbage

▪ Garbage = Unreachable objects from the program

17

Running
program

Garbage

Cyclic
garbage

Transitive Reachability

▪ Keep objects that could be accessed by the program
in the future

▪ All directly or indirectly reachable objects via
references from the program

▪ Starting from root set

18

Root set

...

reachable objects = non-garbage

Root Set

▪ References in static variables (if applicable)

▪ References on call stack (activation frames)

▪ References in registers (if applicable)

19

Mark & Sweep Algorithm

▪ Mark phase

− Mark all reachable objects

▪ Sweep phase

− Delete all unmarked objects

20

void collect() {
mark();
sweep();

}

Example: GC

21

Root set

Example: Mark Phase

22

Root set marked objects
= Non-Garbage

not marked
= Garbage

Example: Sweep Phase

23

Root set

Free garbage

Unmark non-garbage

Mark Phase: Implementation

24

void mark() {
for (var root : getRootSet()) {
traverse(root);

}
}

Enumerable
root set

traverse reachable
objects

Depth-First Traversal

25

void traverse(Pointer current) {
if (current != null && !isMarked(current)) {
setMark(current);
for (var next : getPointers(current)) {

traverse(next);
}

}
} Enumerate

references in object

Mark flag in
object layout

Sweep: Approach

▪ Linear scan over entire heap, all blocks

26

HEAP_START

HEAP_END

marked object

unmarked block

Sweep: Implementation

27

void sweep() {
var current = HEAP_START;
while (current < HEAP_SIZE) {

if (!isMarked(current)) {
free(current);

}
clearMark(current);
current += heap.getBlockSize(current);

}
}

Register free block
in heap

Detailed Aspects

28

What questions remain open?

Open Questions

General

▪ When does the GC run?

▪ Can the program run during GC?

Mark phase

▪ How to collect the root set?

▪ Where are the references inside an object?

Sweep phase

▪ How to determine the block size?

▪ Where to pass the free blocks?

29

Point of Execution

▪ Delayed garbage collection

− Garbage is not immediately detected and freed

▪ GC runs at latest when the heap is full

− Check in the allocate-method

▪ Possibly earlier for prophylactic reasons

− In particular with finalizers (discussed next lecture)

30

Stop & Go

▪ GC runs sequentially and exclusively

▪ Mutator = Productive program

▪ Mutator is interrupted during GC

31

Mutator GC Mutator GC Mutator

Time axis:

Other mechanism: Next lecture

Root Set Collection

Pointers on call stack

▪ Pointers in parameters

▪ Pointers in locals

▪ Pointers on evaluation stack

▪ “this”-reference

(no static fields or registers in our case)

32

Root Set Collection

33

Iterable<Pointer> getRootSet(CallStack callStack) {
var list = new ArrayList<Pointer>();
for (var frame : callStack) {
collectPointers(frame.getParameters());
collectPointers(frame.getLocals());
collectPointers(frame.getEvaluationStack().toArray());
list.add(frame.getThisReference());

}
return list;

}

Mark Flag

34

Type Descriptor

MyClassObject Block

Mark Flag
for GC

blockSize

via map
typeTag

Pointers in Object

35

How can we figure out the pointer offsets in the object?

Class Descriptor

blockSize

typeTag

Pointer

Pointer

offset1

offset2

allFields

Pointers in Object

36

Iterable<Pointer> getPointers(Pointer current) {
var list = new ArrayList<Pointer>();
var descriptor = heap.getDescriptor(current);
var fields = ((ClassDescriptor)descriptor).getAllFields();
for (var index = 0; index < fields.length; index++) {
if (isPointerType(fields[index].getType())) {

var value = heap.readField(current, index);
if (value != null) {
list.add((Pointer) value);

}
}

}
return list;

}
Consider arrays additionally!

isPointerType() = class or
array descriptor

Review: Learning Goals

✓ Understand the purpose and functionality of a
Garbage Collector

✓ Know how to implement a simple Mark & Sweep GC
for your runtime system

37

Further Reading

▪ Dragon Book, Garbage Collection

− Section 7.5-7.6.2: Mark and sweep

▪ Optional, if interested

− R. Jones, A. Hosking und E. Moss. The Garbage Collection
Handbook. Chapman & Hall, 2011

38

Course 142A Compilers & Interpreters
Garbage Collection

Lecture Week 8, Wednesday

Prof. Dr. Luc Bläser

Last Lecture - Quiz

40

void sweep() {
var current = HEAP_START;
while (current < HEAP_SIZE) {

if (!isMarked(current)) {
free(current);

}
clearMark(current);
current += heap.getBlockSize(current);

}
}

What should we do with the free blocks?

Sweep

▪ Remember the free blocks for later re-allocation

41

HEAP_START

HEAP_END

marked object

unmarked block

Today’s Topics

▪ Free Lists

▪ Advanced GC Topics

42

Learning Goals

▪ Understand how free heap blocks are managed

▪ Gain principal knowledge of advanced GC
mechanisms

43

Free List

▪ Linearly linked list of free blocks

44

freeList

New Heap Allocation

▪ Traverse free list until a fitting block is found

▪ Left-over of block can be re-inserted in free list

45

freeList freeList

Allocate

Heap Block Layouts

46

Free blockOccupied block

Sweep requires symmetric block header (mark/size)

linking
free blocks

Type
descriptor

size

type_tag

Mark

size

next

Free List Strategies

▪ First Fit

− No sorting

− Search for first fitting block

▪ Best Fit

− Ascending sorting by size

− Useless small fragments

▪ Worst Fit

− Descending sorting by size

− Find fitting block immediately

47

Segregated Free List

▪ Multiple free lists with different size classes

48

128..196

196..256

Size class

64..128

......

Overflow
>= 32 KB

External Fragmentation

▪ Many small holes in heap due to allocate & free

− Larger allocation may no longer fit into a hole

− Although sum of free blocks would be sufficient

49

Desired allocation

Other Possibilities

▪ Merge neighbor free blocks

− Easily possible during sweep phase

▪ Buddy System

− Discrete block sizes ordered by address

− Exponential sizes (power of 2, Fibonacci)

− Very fast merging & allocation & freeing

− But huge internal fragmentation (unusable rests)

▪ Compacting Garbage Collection

50

Compacting GC

▪ Also called Mark & Copy GC

▪ Allocation at heap end (super-efficient)

▪ GC moves alive objects together

▪ Need to update all references on object moving

51

Compacting GC

52

Free pointer

allocateFree pointer

GCFree pointer

Other Advanced GC Concepts

53

Incremental GC

Finalizers

Finalizer

▪ Method that runs before deletion of an object

− Final cleanup: Close connections, dispose external
resources etc.

▪ Initiated by GC when object is identified as garbage

54

class Block {
@Override
protected void finalize() {

...
}

}
Java finalizer

Separate Finalization

▪ Finalizer is not executed in GC phase, but only later

▪ Reasons:

− Finalizer can take long time
=> blocks GC

− Finalizer can allocate new object
=> corrupts GC

− Programming bugs in finalizer
=> crashes GC

− Finalizer can make garbage alive again
=> resurrection

55

Resurrection

▪ Finalizer can make an object alive again, after it has
been garbage

▪ Not only own object but also indirectly other
objects can resurrect

56

How is this possible?

Resurrection

57

finalizer:
other.ref = this;

Garbage
Root set

Non-garbage

Resurrected

Root set

Resurrected

other

Finalizer Internals

▪ finalizer list = registered finalizers

▪ freachable list = pending finalizers to be executed

58

A

C

B

finalizer list

A

B

freachable

empty

Finalizer Internals

▪ Garbage with finalizer is registered to freachable

59

A

C

B

finalizer list

A

B

A

C

B

finalizer list

A

freachable

B

Garbage

Finalizer Internals

▪ Insertion in freachable effects resurrection => new
GC phase is necessary

60

A

C

B

finalizer list

A

A

C

B

finalizer list

A

freachable

B

freachable

B

resurrected

Finalizer Internals

▪ Finalizer runs later => freachable entry is removed

▪ New GC run is necessary to finally free the object

61

A

C

B

finalizer list

A

freachable

empty

A

C

B A

Finalizer Impact

▪ GC needs 2 mark phases

− Mark and detect garbage with finalizer

− Mark again starting from freachable, then sweep

▪ Object with finalizer needs at least 2 GC runs until
deletion

− Free memory may not be reclaimed fast enough

62

System.gc();
System.runFinalization();
System.gc();

Finalizer Programming Aspects

▪ Order of finalizers is undefined

▪ Finalizer can run arbitrarily delayed

▪ Finalizer are concurrent to main program

− Separate thread or arbitrary interleaving

▪ Does the finalizer run again after resurrection?

− Not in Java

63

Incremental GC

▪ Stop & Go GC may cause too long interrupts

▪ Goal: Perform GC in smaller steps

64

Generational GC

Partitioned GC

… and many more …

Generational GC

▪ Time mirror heuristics

− Young objects  short expected lifetime

− Old object  long expected lifetime

▪ 3 generations

65

Age Generation GC frequency GC pause

Young G0 High Short

Medium G1 Medium Medium

Old G2 Low Long

Heap with Generations

66

G0

G1

G2

Additional root set for G0: All references pointing from G1 or G2 into G0

C

D

Collecting G0

67

C

D

A

B

G0

G1

G2

B

G2

G1
G0

A

Root Sets with Generations

▪ References from old to new generations

− Additional root set to new generations

▪ Write barriers: Detecting references writes in old
generations

− Software: Code instrumentation

− Hardware: Read-only page protection => page fault

▪ GC on old generations must include new
generations

− G1 includes G0, G2 collection involves entire heap

68

Java: G1 Partitioned GC

▪ Organize heap in partitions

− Goal: Short GC interruptions

▪ Concurrent marking with snapshots

− Detect relevant concurrent updates

▪ Focus GC on partitions with most inner garbage
(“garbage first”)

− Evacuate alive objects in new partition

▪ Problem: cyclic garbage across partitions

− Still requires full GC (“stop the world”)

69

Partitioned GC

70

GC focus (most garbage)

Partitioned GC

71

Partitioned GC

72

Free partition

Free partition

Review: Learning Goals

✓ Understand how free heap blocks are managed

✓ Gain principal knowledge of advanced GC
mechanisms

73

Further Reading

▪ Dragon Book, Garbage Collection
− Section 7.6.4-7.6.5: Mark and compact, mark and copy

− Section 7.7.4: Generational GC

▪ Optional, if interested
− R. Jones, A. Hosking und E. Moss. The Garbage Collection

Handbook. Chapman & Hall, 2011

− Java G1 (Garbage First) GC
• http://www.oracle.com/technetwork/tutorials/tutorials-

1876574.html

− Jeffrey Richter. Garbage Collection: Automatic Memory
Management in .NET, MSDN Magazine, Nov. & Dec. 2000

• Finalizer, Weak References, Compacting GC

74

http://www.oracle.com/technetwork/tutorials/tutorials-1876574.html

