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Quiz — Last Lecture

~(7) Which aspects did we leave open in

N W

o the JIT-compiler?



Open Aspects

= Branches: Consistent allocations
= Register pressure
= Native code execution



Today’s Agenda

= JIT-Compiler continued

= Course review & summary



Learning Goals

= Know remaining aspects of a JIT-compiler

= Be able to implement the full JIT-compiler for your
virtual machine



Branches: Inconsistent Allocations

Different allocations could be used for branch target

Eval Stack
[RDX]

Eval Stack
[RAX]

Parameters
[RCX]

Parameters
[RCX]

JE target JMP target

Locals
[R9]

Locals
[R8]

target:
which allocation applies?



Match Allocations on Branches

Before branch Expected at target

Realign before branch
Eval Stack MOV RDX, RAX Eval Stack

[RAX] MOV R9, RS [RDX]

Parameters Parameters

=)

[RCX] [RCX]

Locals
[R9]

Locals
[R8]




JIT Compiler Code (if _true)

switch (opCode) {
case if_true:
var offset = (int)instruction.getOperand();
var target = code[position + 1 + offset];

var label = labels.get(target);
matchAllocation(label); Get label for target

if (previous == CMPEQ) {
assembler.JE_Rel(label);

} .. Realign allocation for target

break;

} - [Junuarequweslabel




Register Pressure

Limited amount of registers (14 general purpose)

JIT may go out of registers
— Too deep evaluation (local allocation)
— Too many locals/params (global allocation)

Solutions
— Stack spilling: push temporary values on call stack

— Store locals/params on call stack



Assembler and Linker

Assembler => binary instruction encoding
— According to Intel 64 specification
— Builder design pattern

Linker => patch addresses in instructions
— Link to static variables

— Method call targets

— Known at JIT time

— Directly insert in JIT-compilation
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HW Execution

Interpreter native call . Native execution
return &
calls
interpreted .
/0 native g()
mter)t)(;eted native f()
Interpreter stack Native stack

(managed) (unmanaged)
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HW Execution

Interpreted

native return interpreter call

Native g()

Native f()
interpreter return native call

Interpreted

stack
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Native Code

Through Java Native Access (JNA)
— Using small C library (platform-dependent)
Security:

— Executable code must be in special virtual page
(executable flag)

VirtualProtect(code, length, PAGE_EXECUTE,
Native call:

— Push IP, branch to native method code
((func*)code) (arguments)

)
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Other Aspects

System calls in native code
— Heap allocation, virtual method calls, type tests

Garbage collection
— Native stack frames & registers belong to root set

Simplification: We only JIT-compile methods
with certain instructions
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Learning Goals

v" Know remaining aspects of a JIT-compiler

v Be able to implement the full JIT-compiler for your
virtual machine
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Course Summary & Review




Review: Covered Topics

= Design of full compiler and runtime system

" For arealistic modern OO programming language

UCI-Java

UCI-Bytecode

Runtime System

Lexer

Parser

Semantic Checker

Code Generator

Code Analysis & Optimization

VM Interpreter

Stack, Heap, Metadata

OO Support & Type Polymorphism
GC

JIT-Compiler
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Summary Lexer

Combine characters to tokens

— Keywords, operators, punctuation, identifiers, literals (int,
string)

Processes regular language

— expressible as EBNF without recursion

Eliminates white spaces and comments

— As far as irrelevant for language

Goal: Ease parsing (constant-size lookaheads)
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Example Lexer

int abs(int x) {

if (x < 9) {
X = -X;
}
return Xx;
}
|dentifier: | Identifier: R OPEN_ | Identifier: | Identifier:
“int” “abs” PARENTHESIS “int” “x”
CLOSE_ ‘ ‘ R OPEN_ | Identifier:
pARENTHESIs [ | OFEN-BRACE = ¥ |_PARENTHESIS | “x”
) [ CLOSE_ [ OPEN_
LESS | 'nteeer:0 ™ parenthesis || BrRace [
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Summary Parser

Analyzes syntax
— Top-down (LL-k) or bottom-up (LR-k)
Creates syntax tree

— Concrete or abstract

Context-free grammar

— EBNF (some limitations with certain parsers)

We built a predictive recursive descent parser

— But there exist also parser generators

20



Example Parser

|dentifier: | Identifier: R OPEN_ |dentifier: | Identifier:
“int” “abs” PARENTHESIS “int” “x”
——————
CLOSE_ ) ) [ OPEN_
PARENTHESIs [ ] OPEN-BRACE = ¥ 1 PARENTHESIS [
Method abs()
if - return
}
X
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Summary Semantic Checker

Build a symbol table
— Database of all declarations (scoped)

Resolve declarations & types
— For all designators and expressions

Type checking

— Assignment, parameter passing, return values

Other semantic checks
— Main-method, boolean if/while-conditions etc.
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Example Semantic Checker

abs metbod
Method abs()
if > return method abs
/\ ! return int
X .
< boolean Assignment param X Int
X~ 0 X - int
i

X
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Summary Code Generator

Generate machine code
— VM code (stack processor) or HW code (register processor)

Template-based code generation
— Map AST pattern to instructions
— Custom traversal (visitor pattern)

* Expressions: Bottom-up
* While/if: With branches
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Example Code Generation

, load 1
if ldc ©
/\ icmplt
br_false labell
Expression < Assignment load 1
/\ /\ ineg
X 0 X Expression - store 1
\ labell:

X
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Summary Code Optimization

Optional step in between
— Transform IR into more efficient IR
— Before code gen, on intermediate code, in JIT-compiler etc.

Different optimizations e.g.

— Algebraic simplification

— Common subexpression elimination
— Dead code elimination

— Copy propagation

— Constant propagation
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Example Code Optimization

Dead code elimination Copy propagation

a = readInt(); aQ = readInt(); writeInt(

b =a+ 1; writeInt(a); readInt());
writeInt(a);

c=b / 2;
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Summary Code Analysis

Control Flow Graph (CFG)

— Basic blocks as nodes
— Branches as edges

Dataflow Analysis as generic tool

— Fixpoint iteration over CFG

— Configuration: State, Transfer and Join
— Transfer with Gen- and Kill-set

— Forward or backward direction
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Summary VM Interpretation

Emulate IL instructions

— Instruction pointer

— Evaluation stack

Runtime structures

— Call stack (method activation frames)
— Heap (object allocations)

— Metadata (type/method descriptors)
Verifier (static or dynamic)

— For safety and security
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Interpreter

Bytecode

load 1

Lde © Instruction Interpreter loop

icmplt <« -

br_false 3 Pointer

load 1

ineg

store 1 Evaluation stack Method descriptor
10
12

12 Locals
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Summary OO Runtime Support

Heap

— Linear address space for object allocations

— Deallocation by garbage collector

— Free list

Single inheritance

— Linear extension of object layout

Type polymorphism

— Ancestor table for constant-time type tests/casts
— Virtual table for constant-time virtual method calls
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Example: Virtual Table

v.drive(); // methodpos0

Code
Type descriptor Vehicle.park

Code

Car.drive

Code
Car.gear
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Summary Garbage Collection

For memory safety

— No dangling pointers

— No memory leaks

Automatic delayed memory reclamation

— Based on reachability from root set
— Root set: call stack, possibly also statics, registers

Mark & sweep
— Transitively mark reachable objects
— Scan over heap, free unmarked objects
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Example: Mark & Sweep GC

marked objects not marked
= Garbage

= Non-Garbage
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Summary JIT-Compilation

Much faster than interpretation
Profiling: Detect hot spots
Compile to native code

— Template-based code generation

Run on hardware

— Code in executable memory page

Local register allocation

— Instead of evaluation stack

Global register allocation

— Store (frequently accessed) variables in registers
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Example: JIT Compilation

load 1

ldc ©

icmplt MOV RAX, ©

br_false labell CMP RCX, RAX

load 1 JGE labell

ineg NEG RCX

store 1 labell:
labell: MOV RAX, RCX

load 1 RET

return
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Out-of-Scope Topics

Advanced code optimizations and analyses
Advanced language concepts

Debuggers, multi-assembly loader

And more...
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Advanced Language Concepts

Static concepts (mainly compiler, metadata)
= Qverloading

= Generics

= Lambdas/delegates

Dynamic concepts (runtime systems)
= Exception handling
= Concurrency

= Reflection
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Conclusions

We have seen the most important concepts

— Compiler & runtime system

Goal: In-depth understanding

— Theory but also by doing (implementation)

Of course, there is more to learn about compilers &
runtime systems
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Review: Overall Learning Goals

v" Understand the fundamental architecture, concepts
and techniques of compilers and runtime systems

v" Implement own pieces of a compiler and runtime
system for a modern OO language on a state-of-the-
art platform

v" Become familiar with syntax and semantic
specifications of programming languages
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