

Lecture Week 10

Prof. Dr. Luc Bläser

Quiz – Last Lecture

Which aspects did we leave open in the JIT-compiler?

Open Aspects

- Branches: Consistent allocations
- Register pressure
- Native code execution

Today's Agenda

- JIT-Compiler continued
- Course review & summary

Learning Goals

- Know remaining aspects of a JIT-compiler
- Be able to implement the full JIT-compiler for your virtual machine

Branches: Inconsistent Allocations

Different allocations could be used for branch target

Match Allocations on Branches

Before branch

Eval Stack [RAX]

Parameters [RCX]

Locals [R8]

Expected at target

Realign before branch

MOV RDX, RAX MOV R9, R8

Eval Stack [RDX]

Parameters [RCX]

Locals [R9]

JIT Compiler Code (if_true)

```
switch (opCode) {
   case if_true:
     var offset = (int)instruction.getOperand();
     var target = code[position + 1 + offset];
     var label = labels.get(target);
     matchAllocation(label);
     if (previous == CMPEQ) {
         assembler.JE_Rel(label);
     } ...
     break;
     ...
     Jump requires label
Realign allocation for target
```

Register Pressure

- Limited amount of registers (14 general purpose)
- JIT may go out of registers
 - Too deep evaluation (local allocation)
 - Too many locals/params (global allocation)
- Solutions
 - Stack spilling: push temporary values on call stack
 - Store locals/params on call stack

Not done in our JIT (simplification)

Assembler and Linker

- Assembler => binary instruction encoding
 - According to Intel 64 specification
 - Builder design pattern
- Linker => patch addresses in instructions
 - Link to static variables
 - Method call targets
 - Known at JIT time
 - Directly insert in JIT-compilation

HW Execution

HW Execution

Native Code

- Through Java Native Access (JNA)
 - Using small C library (platform-dependent)
- Security:
 - Executable code must be in special virtual page (executable flag)

```
VirtualProtect(code, length, PAGE_EXECUTE, ...);
```

- Native call:
 - Push IP, branch to native method code ((func*)code)(arguments)

Other Aspects

- System calls in native code
 - Heap allocation, virtual method calls, type tests
- Garbage collection
 - Native stack frames & registers belong to root set

Simplification: We only JIT-compile methods with certain instructions

Learning Goals

- ✓ Know remaining aspects of a JIT-compiler
- ✓ Be able to implement the full JIT-compiler for your virtual machine

Course Summary & Review 16

Review: Covered Topics

- Design of full compiler and runtime system
- For a realistic modern OO programming language

Summary Lexer

- Combine characters to tokens
 - Keywords, operators, punctuation, identifiers, literals (int, string)
- Processes regular language
 - expressible as EBNF without recursion
- Eliminates white spaces and comments
 - As far as irrelevant for language
- Goal: Ease parsing (constant-size lookaheads)

Example Lexer

```
int abs(int x) {
   if (x < 0) {
      x = -x;
   }
  return x;
}</pre>
```


Summary Parser

- Analyzes syntax
 - Top-down (LL-k) or bottom-up (LR-k)
- Creates syntax tree
 - Concrete or abstract
- Context-free grammar
 - EBNF (some limitations with certain parsers)
- We built a predictive recursive descent parser
 - But there exist also parser generators

Example Parser

Summary Semantic Checker

- Build a symbol table
 - Database of all declarations (scoped)
- Resolve declarations & types
 - For all designators and expressions
- Type checking
 - Assignment, parameter passing, return values
- Other semantic checks
 - Main-method, boolean if/while-conditions etc.

Example Semantic Checker

Summary Code Generator

- Generate machine code
 - VM code (stack processor) or HW code (register processor)
- Template-based code generation
 - Map AST pattern to instructions
 - Custom traversal (visitor pattern)
 - Expressions: Bottom-up
 - While/if: With branches

Example Code Generation

Summary Code Optimization

- Optional step in between
 - Transform IR into more efficient IR
 - Before code gen, on intermediate code, in JIT-compiler etc.
- Different optimizations e.g.
 - Algebraic simplification
 - Common subexpression elimination
 - Dead code elimination
 - Copy propagation
 - Constant propagation

Example Code Optimization

Summary Code Analysis

- Control Flow Graph (CFG)
 - Basic blocks as nodes
 - Branches as edges
- Dataflow Analysis as generic tool
 - Fixpoint iteration over CFG
 - Configuration: State, Transfer and Join
 - Transfer with Gen- and Kill-set
 - Forward or backward direction

Summary VM Interpretation

- Emulate IL instructions
 - Instruction pointer
 - Evaluation stack
- Runtime structures
 - Call stack (method activation frames)
 - Heap (object allocations)
 - Metadata (type/method descriptors)
- Verifier (static or dynamic)
 - For safety and security

Interpreter

Summary OO Runtime Support

- Heap
 - Linear address space for object allocations
 - Deallocation by garbage collector
 - Free list
- Single inheritance
 - Linear extension of object layout
- Type polymorphism
 - Ancestor table for constant-time type tests/casts
 - Virtual table for constant-time virtual method calls

Example: Virtual Table

Summary Garbage Collection

- For memory safety
 - No dangling pointers
 - No memory leaks
- Automatic delayed memory reclamation
 - Based on reachability from root set
 - Root set: call stack, possibly also statics, registers
- Mark & sweep
 - Transitively mark reachable objects
 - Scan over heap, free unmarked objects

Example: Mark & Sweep GC

Summary JIT-Compilation

- Much faster than interpretation
- Profiling: Detect hot spots
- Compile to native code
 - Template-based code generation
- Run on hardware
 - Code in executable memory page
- Local register allocation
 - Instead of evaluation stack
- Global register allocation
 - Store (frequently accessed) variables in registers

Example: JIT Compilation

```
load 1
  ldc 0
                              MOV RAX, 0
  icmplt
                              CMP RCX, RAX
  br false label1
                              JGE label1
  load 1
                              NEG RCX
  ineg
                            label1:
  store 1
                              MOV RAX, RCX
label1:
                              RET
  load 1
  return
```

Out-of-Scope Topics

- Advanced code optimizations and analyses
- Advanced language concepts
- Debuggers, multi-assembly loader
- And more...

Advanced Language Concepts

Static concepts (mainly compiler, metadata)

- Overloading
- Generics
- Lambdas/delegates

Dynamic concepts (runtime systems)

- Exception handling
- Concurrency
- Reflection

Conclusions

- We have seen the most important concepts
 - Compiler & runtime system
- Goal: In-depth understanding
 - Theory but also by doing (implementation)

 Of course, there is more to learn about compilers & runtime systems

Review: Overall Learning Goals

- ✓ Understand the fundamental architecture, concepts and techniques of compilers and runtime systems
- ✓ Implement own pieces of a compiler and runtime system for a modern OO language on a state-of-theart platform
- ✓ Become familiar with syntax and semantic specifications of programming languages