Course 142A Compilers & Interpreters
JIT Continued & Summary

Lecture Week 10
Prof. Dr. Luc Blaser

Quiz — Last Lecture

~(7) Which aspects did we leave open in

N W

o the JIT-compiler?

Open Aspects

= Branches: Consistent allocations
= Register pressure
= Native code execution

Today’s Agenda

= JIT-Compiler continued

= Course review & summary

Learning Goals

= Know remaining aspects of a JIT-compiler

= Be able to implement the full JIT-compiler for your
virtual machine

Branches: Inconsistent Allocations

Different allocations could be used for branch target

Eval Stack
[RDX]

Eval Stack
[RAX]

Parameters
[RCX]

Parameters
[RCX]

JE target JMP target

Locals
[R9]

Locals
[R8]

target:
which allocation applies?

Match Allocations on Branches

Before branch Expected at target

Realign before branch
Eval Stack MOV RDX, RAX Eval Stack

[RAX] MOV R9, RS [RDX]

Parameters Parameters

=)

[RCX] [RCX]

Locals
[R9]

Locals
[R8]

JIT Compiler Code (if _true)

switch (opCode) {
case if_true:
var offset = (int)instruction.getOperand();
var target = code[position + 1 + offset];

var label = labels.get(target);
matchAllocation(label); Get label for target

if (previous == CMPEQ) {
assembler.JE_Rel(label);

} .. Realign allocation for target

break;

} - [Junuarequweslabel

Register Pressure

Limited amount of registers (14 general purpose)

JIT may go out of registers
— Too deep evaluation (local allocation)
— Too many locals/params (global allocation)

Solutions
— Stack spilling: push temporary values on call stack

— Store locals/params on call stack

Assembler and Linker

Assembler => binary instruction encoding
— According to Intel 64 specification
— Builder design pattern

Linker => patch addresses in instructions
— Link to static variables

— Method call targets

— Known at JIT time

— Directly insert in JIT-compilation

10

HW Execution

Interpreter native call . Native execution
return &
calls
interpreted .
/0 native g()
mter)t)(;eted native f()
Interpreter stack Native stack

(managed) (unmanaged)

11

HW Execution

Interpreted

native return interpreter call

Native g()

Native f()
interpreter return native call

Interpreted

stack

12

Native Code

Through Java Native Access (JNA)
— Using small C library (platform-dependent)
Security:

— Executable code must be in special virtual page
(executable flag)

VirtualProtect(code, length, PAGE_EXECUTE,
Native call:

— Push IP, branch to native method code
((func*)code) (arguments)

)

13

Other Aspects

System calls in native code
— Heap allocation, virtual method calls, type tests

Garbage collection
— Native stack frames & registers belong to root set

Simplification: We only JIT-compile methods
with certain instructions

14

Learning Goals

v" Know remaining aspects of a JIT-compiler

v Be able to implement the full JIT-compiler for your
virtual machine

15

Course Summary & Review

Review: Covered Topics

= Design of full compiler and runtime system

" For arealistic modern OO programming language

UCI-Java

UCI-Bytecode

Runtime System

Lexer

Parser

Semantic Checker

Code Generator

Code Analysis & Optimization

VM Interpreter

Stack, Heap, Metadata

OO Support & Type Polymorphism
GC

JIT-Compiler

17

Summary Lexer

Combine characters to tokens

— Keywords, operators, punctuation, identifiers, literals (int,
string)

Processes regular language

— expressible as EBNF without recursion

Eliminates white spaces and comments

— As far as irrelevant for language

Goal: Ease parsing (constant-size lookaheads)

18

Example Lexer

int abs(int x) {

if (x < 9) {
X = -X;
}
return Xx;
}
|dentifier: | Identifier: R OPEN_ | Identifier: | Identifier:
“int” “abs” PARENTHESIS “int” “x”
CLOSE_ ‘ ‘ R OPEN_ | Identifier:
pARENTHESIs [| OFEN-BRACE = ¥ |_PARENTHESIS | “x”
) [CLOSE_ [OPEN_
LESS | 'nteeer:0 ™ parenthesis || BrRace [

19

Summary Parser

Analyzes syntax
— Top-down (LL-k) or bottom-up (LR-k)
Creates syntax tree

— Concrete or abstract

Context-free grammar

— EBNF (some limitations with certain parsers)

We built a predictive recursive descent parser

— But there exist also parser generators

20

Example Parser

|dentifier: | Identifier: R OPEN_ |dentifier: | Identifier:
“int” “abs” PARENTHESIS “int” “x”
——————
CLOSE_)) [OPEN_
PARENTHESIs [] OPEN-BRACE = ¥ 1 PARENTHESIS [
Method abs()
if - return
}
X

21

Summary Semantic Checker

Build a symbol table
— Database of all declarations (scoped)

Resolve declarations & types
— For all designators and expressions

Type checking

— Assignment, parameter passing, return values

Other semantic checks
— Main-method, boolean if/while-conditions etc.

22

Example Semantic Checker

abs metbod
Method abs()
if > return method abs
/\ ! return int
X .
< boolean Assignment param X Int
X~ 0 X - int
i

X

23

Summary Code Generator

Generate machine code
— VM code (stack processor) or HW code (register processor)

Template-based code generation
— Map AST pattern to instructions
— Custom traversal (visitor pattern)

* Expressions: Bottom-up
* While/if: With branches

24

Example Code Generation

, load 1
if ldc ©
/\ icmplt
br_false labell
Expression < Assignment load 1
/\ /\ ineg
X 0 X Expression - store 1
\ labell:

X

25

Summary Code Optimization

Optional step in between
— Transform IR into more efficient IR
— Before code gen, on intermediate code, in JIT-compiler etc.

Different optimizations e.g.

— Algebraic simplification

— Common subexpression elimination
— Dead code elimination

— Copy propagation

— Constant propagation

26

Example Code Optimization

Dead code elimination Copy propagation

a = readInt(); aQ = readInt(); writeInt(

b =a+ 1; writeInt(a); readInt());
writeInt(a);

c=b / 2;

27

Summary Code Analysis

Control Flow Graph (CFG)

— Basic blocks as nodes
— Branches as edges

Dataflow Analysis as generic tool

— Fixpoint iteration over CFG

— Configuration: State, Transfer and Join
— Transfer with Gen- and Kill-set

— Forward or backward direction

28

Summary VM Interpretation

Emulate IL instructions

— Instruction pointer

— Evaluation stack

Runtime structures

— Call stack (method activation frames)
— Heap (object allocations)

— Metadata (type/method descriptors)
Verifier (static or dynamic)

— For safety and security

29

Interpreter

Bytecode

load 1

Lde © Instruction Interpreter loop

icmplt <« -

br_false 3 Pointer

load 1

ineg

store 1 Evaluation stack Method descriptor
10
12

12 Locals

30

Summary OO Runtime Support

Heap

— Linear address space for object allocations

— Deallocation by garbage collector

— Free list

Single inheritance

— Linear extension of object layout

Type polymorphism

— Ancestor table for constant-time type tests/casts
— Virtual table for constant-time virtual method calls

31

Example: Virtual Table

v.drive(); // methodpos0

Code
Type descriptor Vehicle.park

Code

Car.drive

Code
Car.gear

32

Summary Garbage Collection

For memory safety

— No dangling pointers

— No memory leaks

Automatic delayed memory reclamation

— Based on reachability from root set
— Root set: call stack, possibly also statics, registers

Mark & sweep
— Transitively mark reachable objects
— Scan over heap, free unmarked objects

33

Example: Mark & Sweep GC

marked objects not marked
= Garbage

= Non-Garbage

34

Summary JIT-Compilation

Much faster than interpretation
Profiling: Detect hot spots
Compile to native code

— Template-based code generation

Run on hardware

— Code in executable memory page

Local register allocation

— Instead of evaluation stack

Global register allocation

— Store (frequently accessed) variables in registers

35

Example: JIT Compilation

load 1

ldc ©

icmplt MOV RAX, ©

br_false labell CMP RCX, RAX

load 1 JGE labell

ineg NEG RCX

store 1 labell:
labell: MOV RAX, RCX

load 1 RET

return

36

Out-of-Scope Topics

Advanced code optimizations and analyses
Advanced language concepts

Debuggers, multi-assembly loader

And more...

37

Advanced Language Concepts

Static concepts (mainly compiler, metadata)
= Qverloading

= Generics

= Lambdas/delegates

Dynamic concepts (runtime systems)
= Exception handling
= Concurrency

= Reflection

38

Conclusions

We have seen the most important concepts

— Compiler & runtime system

Goal: In-depth understanding

— Theory but also by doing (implementation)

Of course, there is more to learn about compilers &
runtime systems

39

Review: Overall Learning Goals

v" Understand the fundamental architecture, concepts
and techniques of compilers and runtime systems

v" Implement own pieces of a compiler and runtime
system for a modern OO language on a state-of-the-
art platform

v" Become familiar with syntax and semantic
specifications of programming languages

40

