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Abstract. We present a software refactoring tool for loop parallelization.
By using a light-weight static analysis, the tool conservatively detects
sequential for-loops with mutually independent loop steps that can be
safely transformed to corresponding parallel for-loops. We implemented
this tool for C# as a Visual Studio IDE plugin and applied it to several
open-source projects. Our evaluation shows that the analysis is fast and
effective in detecting parallelizable array-centric for-loops.
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1 Introduction

Modern software is still unnecessarily sequentially programmed, even if today’s
programming languages feature light-weighted parallelization constructs and
efficient parallelization libraries, such as for example the task parallel library
(TPL) [20] in .NET with its parallel invocation or parallel loop statements. A
reason for this is that programmers have to explicitly opt-in for parallelization
by selecting the corresponding parallel program idioms, instead of having a
system or IDE tool that automatically assists in parallelizing the right code
fragments. For this reason, various research has been conducted on the topic
of automatic parallelization, at the level of the compiler [1, 5, 4, 23, 28] or the
runtime system [26, 27].

In this work, we focus on a specific case of automatically inferred paral-
lelization, namely for-loop parallelization. Our goal to is develop an IDE tool
that interactively assists programmers in identifying for-loops that can be safely
parallelized, i.e., without altering the functional behavior of the loop, except
its execution speed. The tool eventually transforms such for-loops to their cor-
responding parallel versions. We concentrate on for-loops that have mutually
independent loop steps and are therefore straightforward to be replaced by their
parallel counterpart, without introducing synchronization in the parallel loop
bodies.

To identify parallelizable loops, we focus ourselves on independent loops.
This is also known as proving the absence of loop-carried dependencies [2]. A
loop-carried dependency is given if an instruction of an iteration depends on an



instruction of another iteration. Conversely, loop iteration steps are independent
if they do not access the same memory locations except for read-only accesses,
and if they do not perform any side effects via external function calls, such as I/O.
In many programming languages, including C#, memory locations are defined at
the granularity of variables or array elements. Therefore, loops are guaranteed
to be independent if the write accesses per loop step target distinct memory
locations, and if none of the loop steps calls side-effecting functions.

A particular challenge in the analysis of loop independence is the verification
that there is no array access intersection when at least one element of the array
is written in the loop, i.e., each iteration accesses a distinct set of elements of
the array. For example, consider the code sketched in Listing 1. This example
computes the sum of all entries of the array a up to the position i and writes
it to the position i. A loop-carried dependency occurs in the line 6 because it
depends on the current iteration i and the previous iteration i − 1. This loop
hence has dependent iterations steps, and will not be parallelized by our tool.

1 int [] a = new int [] {
2 1, 2, 3, 4, 5, 6
3 };
4 int m = a. Length ;
5 for(int i=1; i < m; i++) {
6 a[i] = a[i - 1] + a[i];
7 }

Listing 1. Example of a dependent for-
loop that will not be parallelized.

1 int [] a = new int [] {
2 1, 2, 3, 4, 5, 6
3 };
4 int m = a. Length ;
5 for(int i=0; i < m; i++) {
6 a[i] = a[i] * a[i];
7 }

Listing 2. Example of an independent
loop that can be parallelized.

In contrast, Listing 2 sketches an independent and thus parallelizable loop.
This for-loop squares the value at the array position i and stores it again at the
same position. All accesses in the line 6 access a distinct region of the array a
per iteration, such that this loop is free of array access intersections.

There exist well-known static loop dependency analysis methods, such as
the polyhedral model [1, 5], or the GCD dependence test [4, 23, 28]. While these
methods can detect specific complex cases, our motivation was to design a
simple alternative algorithm, that is both fast and effective in practice. This is
particularly important in an IDE refactoring tool that should respond fast to code
changes. Our method also supports parallelization of array-centric loops with
non-linear array index functions. For this purpose, we designed a light-weight
dataflow analysis that infers potential array access intersections, with a relatively
limited, cheap context information. This analysis has been integrated into our
parallel refactoring tool for C# that works as a plugin in Visual Studio IDE. It



highlights for-loops that can be safely parallelized, and on the consent of the
developer, parallelizes these for-loops, by using the .NET TPL’s Parallel.For.

In summary, this paper makes the following contributions:
– Description of a new dataflow analysis to determine the absence of array

access intersections, that experimentally proves to be fast and effective for
array-centric for-loops.

– Report of the implementation and evaluation of a practical refactoring tool
for loop parallelization in C# and Visual Studio based on this analysis.
The remainder of this paper is structured as follows: Section 2 presents the

dataflow analysis method. Section 3 descibes the implementaton of our refactoring
tool based on this analysis. Section 4 reports on the experimental evaluation of
the analysis and the refactoring tool. Section 5 discusses related work. Section 6
finally concludes this paper.

2 Analysis

Instead of applying potentially expensive computations, the analysis uses a set of
simple transfer rules on the static single assignment (SSA) form. These transfer
rules are designed to provide sufficient information to decide whether an array
index expression is an injective function. In other words, it helps deciding if each
iteration in the loop computes unique array indices. One essential property of the
analyzed array index expressions is that they are dependent on the loop index.
For instance, if the function f(x) is injective, using the loop index as function
argument yields a unique value for each iteration. Therefore, an array access
such as a[f(i)], with i representing the loop index, is independent in each loop
step. Consequently, the identity function f(x) = x is the simplest function that
satisfies this property.

This section outlines our dataflow-based loop dependency analysis: Section 2.1
introduces an example that is used throughout the sections to explain the different
steps of the analysis. Section 2.2 specifies requirements for the for-loops that are
covered by the analysis. Section 2.3 introduces our notation to encode analysis
properties. Section 2.4 summarizes the property inference used in the dataflow
analysis. Section 2.5 specifies the dataflow analysis that computes the properties
for loop code. Section 2.6 explains how the dataflow analysis output allows
determining potential array access intersections. Section 2.7 finally combines the
computed information to determine whether the loop is independent and can be
safely parallelized. Section 2.8 describes further static analyses that can increase
the precision in our loop dependency analysis.

2.1 Example

The analysis procedure is introduced with the help of the example sketched in
Listing 3. The illustrated code computes the factorial of every odd array index
and stores the factorial at this position. The outer loop declared in line 5 iterates



1 long [] f = new long [] {
2 15, 15, 18, 18, 20, 20
3 };
4 int m = f. Length / 2;
5 for(int i = 0; i < m; i++) {
6 int o = 1;
7 int p = o + i * 2;
8 long s = f[p];
9 long c = 1;

10
11 for(int j = 1; j <= s; j++) {
12 c = c * j;
13 }
14
15 f[p] = c;
16 }

Listing 3. A loop which computes the factorial
of every odd array index.

1 o1 ← 1
2 p1 ← o1 + i ∗ 2
3 s1 ← f [p1]
4 c1 ← 1
5 j1 ← 1
6 label 1
7 if φ(j1, j2) <= s1 goto 2
8 goto 3
9 label 2

10 c2 ← φ(c1, c2) ∗ φ(j1, j2)
11 j2 ← φ(j1, j2) + 1
12 goto 1
13 label 3
14 f [p1]← φ(c1, c2)
Listing 4. Body of the loop that
computes the factorials in the
SSA form.

over every second element, while the inner loop in line 11 computes the factorial
of the current element.

Listing 4 shows the body of the loop that iterates over the array elements in
the SSA form. The loop index i and the array f have no value numbering since
their write accesses and definitions only occur outside of the body. Instead of
denoting the SSA form as a graph, we here sketch the code with labels and goto
instructions. The line numbers are later used as labels to refer to the specific
basic blocks.

2.2 Prerequisites

For our analysis, we focus on for-loops that have the form as sketched in Listing 5.
Conceptually, other loop patterns, e.g. reverse or multi-step loops, could be
handled as well, by transforming them to our required form. The type of the
loop index has to be an integer, such as int or long. The identifier low defines
the lower bound and up the upper bound of the loop. The implementation also
supports the logical operator <= to define the upper bound as well as i+=1 for
the single step increment. An iteration may start with a negative value and
end with a positive one. We currently concentrate on this specific template of
single-step forward for-loop as this corresponds to the only supported variant
of the Parallel.For program construct of .NET. Moreover, we require that
the analyzed sequential for-loops are correct, e.g., have no integer overflows, no
concurrency issues, etc. inside the loop bodies. We need this assumption, as we



1 for(type i = low; i < up; i++)

Listing 5. Definition of the for-loop structure.

do not prove these elementary correctness conditions and could otherwise effect
subsequent errors through the parallelization.

2.3 Notation

This section introduces some elementary notation that we use in our analysis
and it is outlined in Table 1. We generally denote sets with capital letters. The
identifier ` stands for the label of a particular basic block of the loop body in
the SSA form and s` the basic block with this label. The set S represents the
current state of the analysis. This set contains tuples of the form (x p), stating
that the variable x has the property p.

Table 1. Analysis notation

Notation Description

` The label ` of the basic block.
s` The basic block with the label `.
S The current analysis state.
x The variable x of the SSA form.
p The property p.
(x p) The variable x has the property p.

Table 2. Property notation

Notation Description

x | x is loop-dependent.
x - x is not loop-dependent.
x = 0 x is zero.
x 6' 0 x is at most once zero.
x = 1 x is one.
x+ x is positive.
x− x is negative.

Table 2 introduces the set of properties a variable may have. A variable can
have multiple properties associated with it. Only a few properties are mutually
exclusive, e.g., a positive variable cannot be negative at the same time. Moreover,
the absence of a property does not mean its negation, it only means that the
property has not been proved by the conservative analysis. The primary property
is the loop dependence denoted as the vertical bar1 x |. This expresses that the
variable x is either the loop index itself or a variable computed with an injective
function making use of the loop index. Therefore, these variables have unique
values for each iteration. This property eventually helps to prove the absence of
array access intersections, along with other rules that we describe in subsequent
sections. The counterpart x - expresses that the variable x will have the same
value for all iterations. The property x = 0 states that the value is exactly 0,
1 The idea for the bar comes from the moving value of the loop index. It moves from

one bound to the other.



whereas x 6' 0 specifies that the value may only be zero for a single iteration.
This may be the case if the variable x is loop-dependent. x = 1 means that x is
exactly 1. Property x+ denotes that the value of x is positive or increases in each
loop step, if x is loop-dependent. Analogously, x− has the opposite characteristics
as x+, i.e., represents negative values or a loop-decreasing value.

2.4 Property Inference

This section introduces the rules to derive property sets from expressions and
statements in the program code.

Loop Index The loop index has a set of properties, comprising the loop-
dependence property | and the at-most-once-zero property 6' 0. As we currently
only address increasing loop directions, the additional + property is also as-
sociated. If we support decreasing loop directions in future, we would have to
associate − for them instead. As for the introductive example of Section 2.1, the
loop index has the property set of (1).

Prop(i) = {|, 6' 0,+} (1)

Constants The properties derived from integer constants are self-explanatory,
thus only listed in Table 3 for brevity.

Table 3. Properties generated by constants

Constant Generated Properties

0 {-,= 0}
1 {-, 6' 0,= 1,+}
2, 3, 4, ... {-, 6' 0,+}
−1,−2,−3, ... {-, 6' 0,−}

Phi-Functions The φ-functions conservatively yield the empty property set. As
φ represents multiple potential values and the analysis aims to identify injective
index expressions, we cannot take the intersection. For example, if x1 = 2 and
x2 = 3, the intersection of the properties would be {-, 6' 0,+}. However, this
information would wrongly classify an assignment like a[i+ φ(x1, x2)]← i as not
intersecting between the iterations which is not necessarily the case. Therefore,
we stick to the conservative rule of (P-PHI).

Prop(φ(x1, x2, ..., xn)) = ∅ (P-PHI)



Variables The dataflow analysis keeps track of all variables and the associated
properties and stores these tuples in the analysis state S. This state is queried to
retrieve all state tuples with the desired variable to get the associated properties
as specified by (P-VAR).

Prop(x) = {p | (x p) ∈ S} (P-VAR)

For example, consider the analysis state sketched in (2).

S = {i |, i 6' 0, i+, o1 -, o1 6' 0, o1 = 1, o1+} (2)

(3) and (4) illustrate the properties of the variables i and o1, respectively.

Prop(i) = {|, 6' 0,+} (3)
Prop(o1) = {-, 6' 0,= 1,+} (4)

Binary Expressions Tables 4 to 8 list the property inference rules for binary
expressions. The columns Left and Right express the conditions that have to be
satisfied when deriving the properties. More specifically, both columns specify a
set of properties that have to be associated with the corresponding operand as
sketched in (P-BINEXP).

Prop(e1 op e2) =
⋃

r∈Rows(op)

{Resultr | Leftr ⊆ Prop(e1) ∧Rightr ⊆ Prop(e2)}

(P-BINEXP)
For example, if the column Right has the set {|,+}, it requires that the properties
| and + are associated with the right operand. If this condition is not satisfied,
the properties of the current row cannot be derived. The column Result denotes
which properties are derived if the associated conditions are fulfilled. The rows
captioned with Copy identify opportunities where the properties can be safely
copied from the specified operand. In summary, each row of the rule table has to
be checked whether the corresponding result property of the row can be derived.
Therefore, it is possible to derive multiple properties for a single binary expression
that are eventually unified the property set of that binary expression.

The defined rules follow arithmetics. For example, the addition of two positive
numbers results in a positive number. Similarly, a multiplication with zero results
in zero. However, these rules do not respect integer overflows/underflows and
may yield incorrect properties in such a case. As mentioned in Section 2.2, we
presume that the sequential implementation is free of overflows, or alternatively,
suggest enabling overflow runtime checks in .NET.

As a general example of how to infer the properties of a binary expression,
consider the expression in (5), an extract of the statement in line 2 of the
example’s SSA form.

o1 + i ∗ 2 (5)



Table 4. Inference rules for subtractions

Left Right Result

{|} {-} |
{-} {|} |
{|,+} {−} |
{−} {|,+} |
{|,−} {+} |
{+} {|,−} |
{-} {-} -
{+} {−} +
{−} {+} −
{+} {−} 6' 0
{−} {+} 6' 0
Covered by copy rule. = 0
Covered by copy rule. = 1
∅ {= 0} Copy from left

Table 5. Inference rules for additions

Left Right Result

{|} {-} |
{-} {|} |
{|,+} {+} |
{+} {|,+} |
{|,−} {−} |
{−} {|,−} |
{-} {-} -
{+} {+} +
{−} {−} −
{+} {+} 6' 0
{−} {−} 6' 0
Covered by copy rules. = 0
Covered by copy rules. = 1
∅ {= 0} Copy from left
{= 0} ∅ Copy from right

Table 6. Inference rules for multiplications

Left Right Result

{|} {6' 0} |
{6' 0} {|} |
{-} {-} -
{+} {+} +
{−} {−} +
{+} {−} −
{−} {+} −
{6' 0} {6' 0} 6' 0
{= 0} ∅ = 0
∅ {= 0} = 0
Covered by copy rules. = 1
∅ {= 1} Copy from left
{= 1} ∅ Copy from right

Table 7. Inference rules for divisions

Left Right Result

Covered by copy rules. |
{-} {-} -
Covered by copy rules. = 0
Covered by copy rules. = 1
∅ {= 1} Copy from left
{= 0} ∅ Copy from left

Table 8. Inference rules for modulo

Left Right Result

{-} {-} -
{= 0} ∅ = 0
∅ {= 1} = 0



(6) to (8) show the properties of the operands.

Prop(o1) = {-, 6' 0,= 1,+} (6)
Prop(i) = {|, 6' 0,+} (7)
Prop(2) = {-, 6' 0,+} (8)

Since the variable i is the loop index, it features the loop-dependence property
|. The application of the rules within nested expressions follows conventional
evaluation rules of the programming language. In this example, the multiplication
is evaluated before the addition, i.e., the corresponding expression tree is evaluated
bottom-up. As a consequence of the evaluation order, the multiplication rules
are applied first. Table 6 denotes the necessary inference rules for multiplications.
The | property is derived because the left operand contains the property {|}, and
the right contains {6' 0}. Moreover, + and 6' 0 are derived by the fact that both
operands contain {+} and {6' 0}. This finally leads to the properties of (9).

Prop(i ∗ 2) = {|, 6' 0,+} (9)

Subsequently, the rules for additions listed in Table 5 have to be applied. Since the
right operand has the properties {|,+} and the left has an associated {+}, the |
property is obtained. Moreover, the properties + and 6' 0 are derived because the
{+} condition for both operands is satisfied. (10) denotes the resulting properties
after the application of the addition rule.

Prop(o1 + i ∗ 2) = {|, 6' 0,+} (10)

Other Operations As a conservative approach, expressions without rules
generate the empty property set. For example, floating point operations are not
supported and yield no properties. Since our analysis is inter-procedural, the use
of method invocations is however supported and propagates properties.

2.5 Dataflow Analysis

The previous sections described how to infer properties for a given expression
or statement. This section now describes the application of these properties
in the dataflow analysis. The properties have to be computed per basic block.
Anything but variable assignments does not generate new properties; thus, the
corresponding Gen functions are equal to the empty set as (11) to (14) show.

Gen(x[e1]← e2) = ∅ (11)
Gen(label n) = ∅ (12)
Gen(goto n) = ∅ (13)

Gen(if e goto n) = ∅ (14)

Assignments combine the properties retrieved from the expression e with the
variable x to form the state tuples as illustrated in (G-ASGMT).

Gen(x← e) = {(x p) | p ∈ Prop(e)} (G-ASGMT)



The dataflow transfer function in (S-TRANS) eventually merges the current
analysis state with the generated states of the statement s` by applying a
unification.

Transfer(s`) = Gen(s`) ∪ S (S-TRANS)

One way to solve the analysis is with the help of an iterative worklist al-
gorithm [15, 23, 24]. The worklist can be initialized with all basic blocks of the
SSA form. Although the initial order of the statements is irrelevant, a top-down
initialization requires fewer iterations to converge. The algorithm will terminate
in any case because of the limited size of the monotonously growing analysis
state. This is because the transfer function introduced in (S-TRANS) does not
discard any information, the number of state tuples may only increase. At most,
it will have the size of the number of variables times the number of properties.

2.6 Array Intersection Analysis

Before answering the general question of the loop independency, we first have to
determine potential array intersections. The output of the preceding dataflow
analysis provides corresponding information, namely whether array index expres-
sions are disjoint across all iteration steps of a loop. We additionally need an alias
analysis [23] to identify potential aliases of an array, since this may be additional
source for array access intersections. To deal with array aliases, we conservatively
treat potential array aliases as if they would refer to the same array instance.

For each array and its potential aliases, we collect all array element access
expressions. In the introduced example, this are the read from f [p1] in line 3 and
the write to f [p1] in line 14. We then concentrate on the index expressions of
the array accesses: If an array has accesses with different index expressions, we
conservatively consider these accesses as potentially intersecting. We later relax
this condition in Section 2.8. If the same index expression is used in all accesses
of an array, we continue the intersection analysis for this array: In our example,
this is the case since each access to the array f is made with the same index
expression p1.

In the case of a common access index expression, we look up the property set
of this expression and check whether it contains the loop dependency property.
This is the case for the index expression p1 since the state S contains the tuple
p1 |. Due to the presence of the loop dependency property, it is ensured that each
iteration computes a distinct index and thus no access intersections happen on
the array f .

2.7 Loop Dependency Analysis

If a for loop contains I/O operations, potentially side-effecting calls, or writes to
variables (not array elements!) declared outside the loop body, they are likely to
be loop-dependent and are immediately rejected as parallelization candidates.
Otherwise, we examine array accesses in the loops: We check for each array (and
its aliases), whether it is read-only accessed or the array accesses do not intersect.



The latter information is obtained from the preceding array intersection analysis.
If all these checks are fulfilled, the loop is guaranteed to be independent and can
be parallelized.

The factorial example has obviously no array access intersections. Moreover,
the loop performs neither I/O calls, nor side effects, nor writes to variables
declared outside the loop body. Consequently, the loop is parallelizable.

2.8 Accuracy Improvements

A variety of optimization techniques can improve the results of the introduced
analysis. For example, consider the situation sketched in Listing 6 that constructs
the array indices with an offset. The lines 4 and 5 both access the same array

1 var m = a. Length - 1;
2 for(var i=0; i < m; i++) {
3 var x = i;
4 var o = a[x + 1];
5 a[x + 1] = o + 1;
6 }

Listing 6. Indices as common sub-
expressions

1 var m = a. Length - 1;
2 var b = ...; // computed
3 for(var i=0; i < m; i++) {
4 if(b) {
5 a[i] = a[i] * 2;
6 } else {
7 var x = i + 1;
8 a[x] = a[x] * 3;
9 }

10 }

Listing 7. Intersecting array access with
branches

element. However, they compute the index in two distinct locations. Therefore,
there is no guarantee that the value of the variable x did not change in between.
To cover such situations, we implement a common sub-expression elimination
[23] together with a copy propagation [23] prior to the loop dependency analysis.

Another situation in which we miss the parallelization opportunity is sketched
in Listing 7. In this example, two different branches are present. Each branch uses
a different function to compute the array indices. One single branch would be
detected as parallelizable but not their combination. However, since the condition
and its result is the same for every iteration, the loop itself is parallelizable.
One approach to aid the analysis to handle such situations is the application of
program slicing [6, 11, 29] and analyzing each slice separately. Although, our tool
does currently not implement this.



3 Implementation

The refactoring tool2 is a static code analyzer implemented in C# with the help
of the .NET Compiler Platform (Roslyn) [19]. It is a Visual Studio 2017 Version
15.6 [21] plugin that collects all for-loops within the source code and reports
opportunities for parallelization. Our array access intersection analysis is based on
interprocedural context-insensitive dataflow analysis as described in the previous
section. To avoid cases where methods are overridden with polymorphism, our
inter-procedural analysis only follows non-virtual methods.

Internally, the C# code is transformed into a three-address intermediate rep-
resentation. During the conversion process, semantic checks prevent ambiguities
of shadowed variables. Moreover, a copy propagation and common subexpression
elimination are used to improve the precision of the array access analysis. We
also implemented an alias analysis to detect potential array aliases. Although an
SSA form is the best baseline for our analysis method, we did not implement SSA
transformation for performance reasons (short refactoring tool reaction time) but
used an over-approximation, namely reaching definition analysis instead. This
simplification does not violate soundness of array access intersection analysis.

The implementation currently supports the following language features: 1) au-
to-properties 2) binary and unary expressions 3) coalesce expressions 4) compound
assignments 5) conditional expressions 6) continue and break statements for inner
loops 7) for-, while-, and do-statements 8) method invocations 9) multi-dimen-
sional arrays 10) string interpolation. The unlisted language features are not
implemented at this time and conservatively prevent parallelization of the for-loop.

Moreover, we support a small set of white-listed methods of the .NET frame-
work that are side-effect-free and can be safely parallelized, such as System.Math.
Abs. Our analysis currently analyzes each source code file in isolation and does
not perform an inter-document full-solution analysis.

4 Experimental Evaluation

The refactoring tool was applied to a selection of open source projects available on
GitHub. The list comprises well-known C# projects in general as well as projects
by search strings such as image, algorithms, machine learning, and database are
included. A project must have had at least five for-loops to be taken into account.
Different software maturity levels are considered by selecting the projects with
different user rankings (measured as the number of stars awarded by users in
GitHub): from 56 up to 7,063. It is important to note that test code of the
selected projects was excluded from the analysis to only consider production code
in the evaluation.

Each scan was run on a computer with an Intel Core i7-7700HQ CPU with
four 2.80 GHz cores and 16 GB RAM. The source code of the projects was
located on an SSD (SK hynix SC308). On average, a scan of a project took 4.59
2 The source code is available on https://github.com/camrein/RefactorToParallel



seconds. The measured times are the average out of three subsequent runs. The
analysis automatically skips files without for loops hence the scan time does
not necessarily correlate with the lines of code. Moreover, large files require
more time because the analysis eagerly collects and optimizes methods for the
interprocedural analysis even if they are not used by the for-loops.

During this evaluation, a for-loop was considered parallelizable if it can be
replaced with its Parallel.For counterpart without breaking the as-if-serial
property as well as without changing its body, i.e., not introducing synchronization
in the loop body of the parallel counterpart. We focus on a specific type of
for-loops where we apply array intersection analysis, so-called array-centric
loops. These are for-loops with their bodies accessing arrays and engaging the
elementary language features as listed in Section 3. We, therefore, exclude for-
loops that work on collections, provoke virtual method calls, or use object accesses
(except arrays and strings). Our motivation is to assess the quality of the array
intersection analysis, by concentrating on mere array-accessing for-loops with
language features implemented by our analysis. Twenty projects were analyzed,
as listed in Table 9.

Table 9. Projects used for the analysis coverage evaluation

Project LoC (C#) Stars Avg. Time (s)

AForge.NET 20,684 405 4.04
BrainSimulator 189,858 224 5.34
CSCore 45,325 860 4.75
C-Sharp-Algorithms 16,921 1,657 2.52
GeneticSharp 13,581 320 1.74
ImageProcessor 18,974 1,859 4.27
ImageSharp 27,966 1,790 2.13
Inbox2 desktop client 88,731 435 5.07
LiteDB 15,404 2,806 1.99
Microsoft BotBuilder 41,998 5,037 4.08
Naiad 28,886 371 4.59
Nancy 34,874 6,034 4.57
NHibernate 360,776 1,423 8.08
Popcorn 18,971 601 2.30
RavenDB 638,467 1,898 13.25
SharpBrain 1,330 53 2.11
SignalR 16,941 7,063 2.89
Spring.NET 52,208 456 9.18
Structure.Sketching 17,536 56 2.48
Veldrid 17,496 361 2.02

We scanned all projects for the described type of for-loops and counted 223
such array-centric for-loops. Ten of these loops make use of a computed array
index and the other 183 use the loop index itself. We eventually run our loop



independence analysis on all these projects. The tool proves to be relatively fast,
taking about 4.5 seconds on average per project. Our tool reported 193 of the
selected 223 for-loops to be independent and parallelizable. 30 of 223 for-loops
could not be identified as independent and would therefore not be parallelized.
We eventually manually reviewed all the 223 loops for loop independence. As
expected, all 193 reported parallelizable loops were indeed independent (no false
positives). As for the 30 for-loops that the tool did not approve for parallelization,
we identified six loops to be independent, i.e., 3% false negatives). To support
these remaining 3%, we observed that an analysis supporting accesses to array
ranges — such as the GCD dependence test — would be necessary. In summary,
our tool shows effective detection for the case of “low-level” array-centric loops.

5 Related Work

There already exists a variety of utilities aiding engineers in the development of
parallel code. This section briefly introduces a selection of different approaches.

Hydra [8] operates on the intermediate representation of LLVM [7, 16, 17].
Its underlying idea can be seen as C#’s async/await [18, 22] programming
model. However, instead of manually declaring fragments with async and await
respectively, it infers them automatically. To accomplish this, Hydra searches for
parallelizable code fragments and computes an estimated cost of the sequential
and the parallel code. If the estimated cost of the parallel code is lower than the
original sequential, the function invocation is offloaded to a thread pool.

Sambamba [26, 27] aims at large-scoped automatic parallelization. Besides a
conservative compile-time code analysis on LLVM’s bitcode, it also incorporates
a runtime system that optimistically parallelizes execution. For this purpose, the
runtime system collects further information and replaces method code where
appropriate. The collected information is thereby stored in a persistent storage
that can be reused in later program executions. At runtime, Sambamba involves
a software transactional memory [14] system to guard optimistically parallelized
code. This STM system allows, different to the previous two approaches, the
parallelization of code fragments that require synchronization.

Baar [3, 9, 10] is an approach that transparently offloads compute-intense
program parts to a server. It provides an environment to allow the execution of
programs in LLVM’s IR. The goal is the runtime identification of code hotspots.
Identified hotspots are offloaded to a server that applies additional processing
such as parallelization and vectorization. The automatic parallelization is thereby
accomplished with the LLVM subproject Polly [13, 25], based on the polyhedral
model. The Message Passing Interface (MPI) [12] is used for inter-process com-
munication; reducing the negative impact of expensive data transfers between
client and server.

In summary, none of the introduced projects actively informs the user about
the parallelization opportunities. In contrast, our implementation aids the devel-
oper with the parallelization by actively informing them inside the IDE, through-



out the entire source code. The developer may then decide if the parallelization
is justified and apply the refactoring directly in the source code.

Besides the already introduced tools, there are also various analysis approaches.
For example, the GCD dependence test [4, 23, 28] is a technique that allows
deciding if array indices computed with linear expressions may intersect with
other iterations. Although it does not support non-linear expressions like our
approach, it is capable of identifying non-intersecting ranges.

Another powerful analysis technique is the polyhedral model (or polytope
model) [1, 5]. It allows the transformation of loops which — in their original
form — are not parallelizable but are in a restructured way. The detection of
intersections is accomplished by the setup of inequalities and solving for an
integer solution with the help of an ILP solver which can become very expensive
for complex programs.

6 Conclusion

This paper introduced a light-weight conservative dataflow analysis to prove the
absence of array access intersections in for-loops, covering linear and non-linear
array element access patterns. It proves to be effective in terms of speed and
accuracy for “low-level” for-loops that merely work on arrays. For this frequent
case of for-loops, we achieved 97% precision with 4.5 second analysis time per
multi KLOC project. We integrated the analysis in a practical Visual Studio
IDE plugin operating on C# code. The tool actively informs the user about safe
parallelization opportunities in the context of array-centric for-loops.
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