
.NET Task Parallelization in the Cloud
Runtime Support for Seamless Distribution of Shared Memory Parallel Tasks

Luc Bläser
HSR University of Applied Sciences Rapperswil

Institute for Software
lblaeser@hsr.ch

Abstract
The native parallelization support in predominant programming
languages focuses on local cores, while mostly neglecting the huge
parallelization potential of distributed execution. We have therefore
developed a .NET runtime system extension that automatically
distributes ordinary shared memory parallel tasks into the cloud,
to execute them on a large number of cores, e.g. on a cluster. The
runtime mechanism takes care of transmitting the necessary task
code and data to the service, as well as of propagating task results
and side-effect changes back to the client memory. For programs
with long-running tasks or a high amount of tasks, the system is
able to soon compensate the network transmission overheads and
thereafter scale with the number of tasks up to the available server-
side cores.

Categories and Subject Descriptors Software notations and tools
[Compilers]: Runtime environments

Keywords Task parallelism; cloud; distributed shared memory
system; runtime system design; .NET; cluster

1. Introduction
Today’s mainstream programming languages principally target
only on local multi cores with their institutionalized paralleliza-
tion features, as it fits well to their underlying shared memory
model. However, moving from local to distributed parallelization,
imposes the substantial extra burden for the developers to leave
their conventional programming model and close the gap to distri-
bution on their own, e.g. by redesigning the programs for specific
distribution frameworks (e.g. service, remoting, or grid computing
architectures) or by engaging a different more distribution-friendly
programming paradigm (e.g. descriptive dataflow models).

It is therefore of no surprise that parallelization in daily pro-
gramming practice largely concentrates on utilizing local proces-
sors, while mostly neglecting distributed parallelization - unless
there is a strong performance urge justifying the efforts of a corre-
sponding dedicated solution. Another strong distribution obstacle
is the fact that developers and users do normally not have remote
processor power at hands, although many clusters and distributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c⃝ 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

systems would have free capacities – but unfortunately without an
easy-to-use “parallelization-as-a-service” interface.

There has been intensive research done in this area, princi-
pally going into three main directions: (1) new/different program-
ming models inherently suited for distribution, such as Actors/MPI
[1, 11], or dataflow/query models [8, 22], (2) distributed task/thread
frameworks, e.g. in the grid computing area [12, 17, 20], and (3),
distributed shared memory systems [2, 10, 14, 16, 24]. While the
first direction certainly takes the more radical and sustainable ap-
proach of tackling the distribution impedance already at its roots,
it usually compels programmers to apply the different paradigm on
top of or aside their ordinary imperative shared memory program-
ming language. The second direction, represented by the many ex-
isting grid computing or distributed thread/task frameworks, typi-
cally leads to visible seams in the program design: it necessitates
explicit task and data offloading, marking data serializable, wrap-
ping data in specific sub-classes etc., which is far away from clos-
ing the semantic gap between the problem-space and the machine-
space parallelism. The third direction, distributed shared memory
systems, transparently enables distribution of normal shared mem-
ory programs across machines. Although, it is generally heavy-
weight for this purpose, operating on the whole program rather than
selectively on the distributed parallel algorithmic parts. A more de-
tailed survey of related works is given in Section 5.

Our research goal is to significantly ease distributed paralleliza-
tion by providing a new runtime system that allows scaling up par-
allel programs seamlessly on massive processor power in the cloud,
i.e. with the same programming model as for local parallelization
and without requiring any explicit code and data transmissions.
For this purpose, we propose an enhanced thread pool mechanism
that transparently integrates remote multi-processing: Although de-
scribed like conventional local parallel tasks operating on shared
memory, the runtime system automatically distributes the tasks to
a web service into the cloud. Behind the service, the tasks are to be
executed on a large number of cores before their results and their
potential effected memory changes are finally sent back to the client
runtime. The web service is of our design and can abstract an ar-
bitrary parallel processing infrastructure behind the interface, e.g.
a high-performance computer cluster. We have realized this system
for the .NET framework, to demonstrate the concept by the exam-
ple of a popular shared memory programming platform.

This paper makes the following contributions:

• We have developed distributed task parallelization as a model to
seamlessly utilize remote multi-processor power in mainstream
programming, such as in .NET.

• We have implemented a new runtime system for distributed task
parallelization in .NET, and have experimentally validated its
practicability and benefit.

var distribution = new Distribution(ServiceURL, AccessCode);

var taskList = new List<DistributedTask<long>>();

foreach (var number in inputs) {

 var task = DistributedTask.New(

 () => Factorize(number)

);

 taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {

 Console.WriteLine(task.Result);

}

long Factorize(long number) {

 for (long k = 2; k * k <= number; k++) {

 if (number % k == 0) { return k; }

 }

 return number;

}

Figure 1. Distributed parallel tasks factorizing numbers.

The remainder of this paper is structured as follows: Section
2 describes the programming model of distributed parallel tasks.
Section 3 explains the design and implementation of the runtime
system. Section 4 presents performance and scalability results.
Section 5 compares distributed task parallelization to related work.
Section 6 finally draws a conclusion of this work.

2. Programming Model
Cloud task parallelization encourages programmers to implement
and start distributed parallel tasks that can be dispatched and exe-
cuted on remote processors.

2.1 Distributed Tasks
In our system, which is based on .NET, distributed tasks can be pro-
grammed like conventional local thread pool tasks offered by the
.NET task parallel library [15]. A distributed task is implemented as
an ordinary .NET delegate1 or lambda2. In principle, working with
distributed tasks remains analogous to using local parallel tasks,
i.e. they can be instantiated, started, and joined. Certain restrictions
apply for distributed tasks: Inner synchronization and calls to IO
are for example forbidden. A detailed explanation of restrictions is
provided in subsequent sections.

Figure 1 shows a code example for factorizing a set of numbers
in parallel, each number being factorized as a separate distributed
task. No extra compilation step is involved here; adding a refer-
ence to the library of our cloud task parallelization is sufficient
for the runtime mechanism. The code sample looks very similar
to the local task parallelization, as depicted in Figure 2. The URL
and access authorization code need to be specified in advance for
the remote task parallelization service, before a set of tasks can be
started. Accessing task results blocks as long as the correspond-
ing task is not terminated, where task faults are propagated as ex-
ceptions. We deliberately did not unify the local and distributed
task class because we would like to encourage explicit combined
starts of multiple distributed tasks for reducing network roundtrips,
whereas the existing local task class promotes starting one-by-one.

For increased convenience, distributed tasks can also be applied
in the form of data parallelism (Figure 3), by using parallel invoca-
tions or parallel loops. As for a parallel loop, each loop step starts
a distributed task that executes the body and is joined again at the
loop end.

1 A .NET delegate is a reference to a method and an associated object.
2 A .NET lambda is an anonymous delegate in the form of an inline state-
ment or expression with access (closure) to variables of its lexical scope.

var taskList = new List<Task<long>>();

foreach (var number in inputs) {

 var task = Task.Factory.StartNew(

 () => Factorize(number)

);

 taskList.Add(task);

}

foreach (var task in taskList) {

 Console.WriteLine(task.Result);
}

Figure 2. Analogous solution with local parallel tasks.

distribution.ParallelFor(0, inputs.Length, (i) => {

 outputs[i] = Factorize(inputs[i]);
});

Figure 3. Distributed data parallelism.

Alike local tasks, distributed tasks are allowed to also perform
side-effect changes on disjoint memory locations in shared mem-
ory, as also illustrated in Figure 3. The modifications in the ar-
ray outputs of the example become automatically visible after
task completion. For this purpose, the runtime system collects side-
effect changes of tasks at the server side and propagates them back
to the client-side memory. The system detects certain data races, as
described in the next section.

2.2 Task Isolation
Distributed tasks are required to be independent of all other active
tasks and threads, i.e. read-only accesses on shared variables and
arbitrary accesses on non-shared variables are allowed. The granu-
larity of variable accesses is per field or array element. Notably, this
does not constitute a strong limitation because for local task code,
synchronization in task execution is usually also avoided for high-
est possible performance. This applies for both synchronization
primitives and memory model atomicity/visibility. The demanded
task isolation eases the distribution significantly, since it excludes
information flow between active distributed tasks, as well as, be-
tween active distributed tasks and the remaining program code. Our
system detects certain violations of task isolation, namely when
tasks employ synchronization, or when write-write conflicts hap-
pen due to data races. Read-write conflicts are not detected though:
The reading task will not see the change of another concurrent task.
In contrast, data races in local concurrency are not detected at all,
meaning that our system provides somewhat more runtime guards.

2.3 Security Concerns
The runtime system prevents distributed tasks from directly or in-
directly executing IO operations, system calls, reflection or un-
safe/unmanaged .NET code. IO and system calls are not allowed
because we do not delegate these calls back to the client, such that
they would otherwise become effective on the remote machines. If
reflection and unmanaged code would not be forbidden, program-
mers could accidentally or intentionally inspect or modify arbitrary
program state or corrupt memory safety at the remote side.

3. Runtime System
The system for distributed task parallelization consists of three
components: a client runtime library, the cloud processing web
service, and a server runtime library.

3.1 Processing Roundtrip
The processing of distributed tasks involves the following steps,
as illustrated in Figure 4: (1) The potentially executed program

Distributed Task Client Runtime

Task Parallelization Service (HTTPS)

Task Code
& Data

2. Start tasks

1. Serialize task code

and data

6. Serialize results and

memory changes
4. Deserialize code

and data

5. Instantiate and execute tasks

in parallel

Results &

Changes

3. Distribute on

compute nodes

8. Notify task

completion

9. Update changes

in memory

Distributed Task Server Runtime

7. Aggregate task

completion data

Distributed

Tasks

Figure 4. Distributed task runtime system.

code and accessible data of the invoked tasks are collected and
serialized by the client side library at runtime. (2) The serialized
code and data are shipped to our web service which represents the
cloud processor resources. (3) The service distributes the tasks on
server-side compute nodes, currently by launching a HPC cluster
job consisting of a HPC task per input .NET task, i.e. by using
the default task scheduling of the cluster. (4) The code and data
are deserialized and instantiated by the server runtime library on
each server compute node. (5) The remote tasks are executed on
the compute nodes. (6) When terminated, the results and modified
data of tasks are collected and serialized by the server runtime
library. (7) The serialized data of task completion is sent back to
the initiating client over the web service. (8) The updates are finally
made effective in local memory of the client.

3.2 Task Serialization
When tasks are started for distribution, the client runtime compo-
nent serializes the necessary code and data in two phases by way of
reflection.

In a first phase, a conservative context-insensitive code analysis
determines all reachable program code. Starting from the task del-
egate, the transitive closure of potentially directly or indirectly in-
voked methods is calculated. Additionally, it records all potentially
used classes and accessed fields within the reachable methods. The
code of each visited method is examined to only contain supported
instructions and calls according to the security constraints (the sys-
tem triggers a runtime exception if the code cannot be distributed).
The set of reachable methods and their intermediate language code
is eventually serialized.

In a second phase, all potentially accessed task data is collected.
For this purpose, the system generates a partial heap snapshot, be-
ing the graph of objects that are reachable via references from the
task delegate, by only considering the references occurring in po-
tentially accessed fields according to the preceding code analysis.
For the collected objects, only the state of accessible fields needs
to be serialized. Besides the object instances, the snapshot also in-
cludes static fields and constants that can be used by tasks. Because
of the required task isolation, the runtime serialization delivers a
consistent state without need of synchronization, i.e. the system
never blocks other running threads. Due to the conservative analy-

sis, the snapshot may, however, include data that is not effectively
accessed by the tasks and therefore also not required to be isolated:
the state of this data may be inconsistent though but it is also never
accessed by the distributed tasks.

3.3 Task Results
The server runtime component returns all necessary information
of completed tasks, such as the task delegate result value, modi-
fications on transmitted objects and static data (updates of fields
and array elements), as well as, all reachable new objects that have
been created by the remote task execution. The client in turn per-
forms the in-place updates on arrival of the task completion infor-
mation, i.e. modifications are applied to the corresponding objects
and static fields of its input snapshot. We perform change detec-
tion by comparing the field and array element state before and after
task execution. With this approach, the client runtime also detects
certain data races, namely illegal write-write conflicts across dis-
tributed tasks.

3.4 Service Design
Task code (program metadata and intermediate language code) and
data (object graph and static fields) are encoded in an own binary
format to reduce client-to-service traffic as much as possible. The
service functionality basically comprises two operations, one for
starting a set of tasks and another for awaiting the termination of
a set of tasks. To reduce network roundtrips, multiple tasks can
be sent in one bunch, where the task instances can also share
the same task code. To support secured network transmission, a
HTTPS service binding can be used.

3.5 Limitations
Our system supports the essential language feature set for imple-
menting algorithmic tasks (arrays, variables, control statements, el-
ementary types, methods, objects). However, the present version
also has some implementation restrictions: nested task starts are
not supported, as this would involve rebalancing of distributed tasks
across compute nodes in the backend. Moreover, some specific lan-
guage features such as type polymorphism (inheritance, interfaces,
delegates, exception catching), struct-types, ref/out parameters are
currently not yet implemented within tasks - although there is no
conceptual reason against it. The system detects unsupported fea-
tures in distributed tasks and reports such by an exception.

4. Experimental Results
Distributed task parallelization is intended for running computing-
intensive tasks and/or a large amount of tasks, offering a high
potential of parallelization.

4.1 Measurement Setup
For an experimental evaluation of our current system version, a
set of synthetic parallel problems have been implemented on the
basis of distributed tasks and eventually run in an environment
with a MS HPC computer cluster behind the cloud service. The
cluster comprises 32 nodes with 12 Intel Xeon cores, 2.6 GHz each
(of which we were allowed to use 100 cores for our experimental
study). The client and web service each run on an Intel 2 Core, 2.9
GHz machine, with 100Mbit/sec bandwidth and 1ms network delay
between client, service and the cluster. All measurements have
been performed by using compiler-optimized 64-bit .NET program
assemblies. For all runtime results, the minimum of three repeated
runtimes is considered, to reduce negative influences of temporary
network speed fluctuations.

Figure 5. Performance scaling by number of tasks.

Figure 6. Performance scaling by number of cores.

4.2 Performance Scalability
To study the performance scalability, we measure the runtime for a
set of independent computation tasks. To start with a first scenario,
we compute the factorization of a set of sample numbers, each
composed of two larger prime factors. Each number is factorized
independently in a parallel task. The comparison involves three
processing approaches: (1) with distributed tasks, (2) with local
tasks, and (3) sequential execution. Figure 5 shows the runtime in
seconds depending on the amount of input numbers, which is equal
to the number of parallel tasks. As expected, the parallel speedup
of distributed tasks scales linearly with the number of tasks – in this
scenario, each task runs on a separate instance of the 100 available
cores. Naturally, local parallelization only offers a speedup of 2 on
the two core client machine. Of course, the speedup also depends
on the number of free cores available in the cluster. Figure 6 shows
the necessary runtime in seconds for factorizing 100 numbers, by
limiting the number of available cores in the cluster.

4.3 Cost Breakdown
The runtimes for distributed task parallelization involve different
performance cost factors, which vary from problem to problem:
(1) the effective task execution time on the server side, (2) the
network transfer time from the client over the service to the cluster,
(3) the cluster dispatching costs, and (4) the accumulated effective
overheads of our runtime mechanism, that is task serialization,
deserialization, and change/result propagation. Table 1 depicts the
breakdown of runtime costs in seconds for the factorization of 10
numbers, i.e. for 10 tasks. In this scenario, task execution represents
the most significant part: this is the time where tasks are executed
in parallel on the cluster. Network transfer constitutes the second
most substantial portion. The remaining cost factors, including our
own runtime mechanism, are relatively small.

4.4 Performance Comparisons
For a more general performance comparison, we evaluate the run-
times for different problem cases: (1) Mandelbrot fractal compu-

Runtime costs
(seconds)

Factorization
(10 numbers)

Node execution 18.4

Network transfer 1.9

Cluster dispatching 0.3

Task serialization 0.3

Table 1. Runtime costs breakdown.

Runtime
(seconds)

Mandelbrot
(10000 x 1000)

Primes Scanner
(range 107)

Knight Tours
(6 x 6 board)

Distributed 8.0 4.7 120

Local parallel 20 9.2 1100

Sequential 37 19 2200

Table 2. Performance comparison of parallel problems.

tation for a specified image size, as a representative of a parallel
problem with a relatively high data amount compared to the task
computation time. (2) Knight tours computation on a chess board of
a specified size, as a representative for relatively long-running task
computations. (3) Primes scanner counting primes in a specified
number range, as a representative of relatively short-running tasks.
Table 2 shows the runtimes in seconds, rounded to two significant
figures, for the specified instances of these problems. We again
compare distributed task parallelization (100 cores), local task par-
allelization (2 cores) and sequential execution. Once more, signifi-
cant performance improvements can be achieved with the runtime
support of distributed tasks.

4.5 Result Discussion
As expected, the examples confirm that the runtime system is able
to reach a high parallel speedup by the large amount of remote
cores. However, the gain of parallelization needs to compensate the
involved overheads, which are primarily the network transmission
time, depending on the size of task serialization, the data bandwidth
and network delay. Distributed task parallelization is therefore gen-
erally beneficial if a large amount of tasks is executed, tasks are
running sufficiently long, or tasks entail relatively low data trans-
fer.

5. Related Work
5.1 Distributed Data Parallelism
Microsoft DryadLINQ [22], built on the distributed runtime en-
gine Dryad [13], has close relation to our system: It permits au-
tomatic distributed processing of .NET LINQ [19] queries on clus-
ters. While this model is oriented on descriptive programming of
distributed dataflows in terms of queries, our system promotes more
imperative task or data parallelization. Therefore, our system also
allows distributed tasks to perform side-effects or changes that are
propagated to the client, while the only backflow in DryadLINQ
evaluations are the query results. Side effects of delegates inside
the queries of DryadLINQ are ignored.

MapReduce [8] and in particular, also the Hadoop MapReduce
implementation3, are popular dataflow programming models for
high-scale distributed parallelization. The integration in a client
program is, however, less seamless than in our model: Data is to
be explicitly passed to the map and reduce functions from files or
serializeable key-value sets. This is different to the shared memory

3 http://hadoop.apache.org

illusion of our model, where the data of distributed tasks is automat-
ically transmitted. MapReduce does also not directly incorporate a
cloud approach where clients can easily offload their dataflows to
a service. Though, such architecture can be designed around. Sim-
ilarly, FlumeJava [5] and Cascading4 realize distributed data paral-
lelism in Java on top of Hadoop. In both systems, custom parallel
processing operations cannot use shared memory.

Other grid computing systems such as Pegasus5 and Swift [23]
also facilitate DAG-like task workflow distribution on cloud com-
puting resources but again with explicitly programmed data and
task transmission. CIEL [20] supports powerful parallel task work-
flows with dynamic task spawning implemented in a specific lan-
guage (Skywriting). Tasks can trigger batch commands, or invoke
Java/.NET code in a less transparent way than our system: by de-
noting the class name and passing arguments and results.

5.2 Distributed Task Parallelism
Existing distributed thread/task programming frameworks, such as
JPPF6, Hadoop, ProActive Parallel Suite7 [12], the already men-
tioned CIEL Skywriting [20], Alchemi [17], Manjrasoft Aneka
.NET Tasks8, and many others, make distribution significantly
more visible than in our system: heap data from the client pro-
gram is not automatically shared across distributed processes but
must be passed as explicitly serializeable objects within task pa-
rameters and results, or has to be managed in specific grid heaps
or distributed data collections. However, the focus of our system is
on enabling mostly seamless and convenient task parallelization on
remote processor resources.

5.3 Message Passing Models
The Actor model [1, 11] facilitates inherent distribution of active
instances (actors) across machines, because actors only interact via
explicit message communication and do not share memory. This
can even be applied on top of mainstream programming languages,
by frameworks or libraries such as Akka9, MPI 10, ProActive par-
allel suite [3], and many more. If applied within a conventional
shared memory language, this indispensably provokes a semantic
gap, since programmers need to think in a different paradigm than
the native language and have to stick to particular conventions. For
example, actor communication must not be bypassed by ordinary
references.

5.4 Distributed Shared Memory
Various systems have realized virtual shared memory on distributed
computers, be it at the operating system level [10, 16] or at the run-
time system of a programming language [2, 14, 24]. While this can
establish automatic distribution of an entire program, our system
employs distribution only selectively for task parallelization. More-
over, we provide the distribution as a service for use by a possibly
open group of clients.

5.5 Modular Distribution
Transparent distribution can be enabled for modular systems, by
configuring a flexible deployment of the modules across machines
and letting the runtime system transmit the inter-module calls. The
R-OSGi [21] middleware distributes the modules of a Java program

4 http://cascading.org
5 http://pegasus.isi.edu/
6 http://jppf.org
7 http://proactive.activeeon.com
8 http://www.manjrasoft.com
9 http://akka.io
10 http://www.mpi-forum.org

(based on the OSGi framework) across systems, by automatically
replacing method calls by remote invocations. While it allows flexi-
ble and mostly seamless distribution, it is not designed for enabling
massive remote parallelization, e.g. on a cluster.

5.6 Offloading in the Cloud
Dynamic code offloading to the cloud gains increasing popularity
in the research area of mobile computing [6, 7, 9]. MAUI [7] is a
.NET-implementation, in which distributable methods need to be
explicitly marked by an attribute. CloneCloud [6] goes further and
employs static analysis and dynamic profiling for code partition-
ing instead of explicit information. The primary motivation of this
research area is to reduce execution and power on mobile devices
and not necessarily to increase parallel speedups. Stack-on-demand
execution [18] realizes transparent task distribution in Java by par-
tial thread migration across machines. The offloading is very fine-
granular, i.e. procedure activation frames are transferred as needed
and objects are fetched from target side on demand. The design
somewhat differs to our goal of massive parallelization: We dis-
patch an entire set of tasks in one roundtrip, requiring the runtime
system to collect all necessary code and data in advance, without
suspending the program. Moreover, our system allows distributed
tasks to modify disjoint fields and array elements even on the same
object, and also detects distributed write-write data races.

5.7 Consistency Models
The work on cloud types with revision diagrams [4] proposes a
more relaxed model of dealing with shared mutual state in concur-
rent and distributed systems on the basis of eventual consistency.
This is no option in our system, as it ought to fulfill the stan-
dard .NET programming model, where unsynchronized read-write,
write-read, and write-write accesses are low-level data races, i.e.
programming errors. Introducing new types with a different con-
sistency model would have sacrificed the transparent move from
local to distributed parallel programming. While data races are not
detected in .NET as well as in other mainstream programming lan-
guages (resulting in undefined behavior), our system goes beyond
this by reporting at least write-write data races.

6. Discussions and Conclusions
The presented runtime system enables seamless distributed task
parallelization with the illusion of shared memory. While the pro-
gramming model remains principally identical to working with lo-
cal parallel tasks, the runtime engine automatically dispatches tasks
over a service onto remote processor resources in the cloud. In con-
trast to other less seamless systems, this liberates developers from
any distribution-specific programming artefacts, such as develop-
ing explicit remote code, realizing explicit communication, imple-
menting any serialization, or wrapping/marking/attributing code or
data for distribution-awareness.

Of course, distributed task parallelization is not appropriate for
all classes of parallel problems. It is rather designed for computing-
intensive tasks or a large amount of tasks, where it can achieve
very high speedups. Thereby, the total task execution time has to be
significantly larger than the network-dependent transmission time
of task data between the client and the service.

We see a high potential if programmers can use “parallelization-
as-a-service” in a way that is as simple and convenient as our task
parallelization in the cloud.

Certainly, there is room for various improvements that we would
like to address in future: (1) The runtime system could be enhanced
to support more features, especially nested task starts, task chain-
ing, task canceling, as well as, remote monitoring and debugging.
(2) It could be investigated on alleviating task isolation by permit-

ting well-defined synchronizations across tasks. (3) Instead of con-
servative reachability analysis, one could study other techniques
such as lazy data transmission requested by the server at task ex-
ecution time. (4) It would be interesting to offer a public paral-
lelization service where users can directly consume and perhaps
also offer multi-processor power on demand.

7. Availability
The runtime system with program samples is available on our
project website:

http://concurrency.ch/Research/TaskParallelism

Acknowledgment
I gratefully appreciate the feedback from Peter Sommerlad, Svend
Knudsen and Thomas Corbat, helping to improve this paper. I
also express my thanks to Henrik Nordborg from the Microsoft
Innovation Center for Technical Computing for offering access on
the Microsoft HPC Cluster at the HSR during the experimental
evaluations.

References
[1] G. Agha. Actors: a model of concurrent computation in distributed

systems. MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-
01092-5.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: a single system image
of a JVM on a cluster. In Parallel Processing, 1999. Proceedings.
1999 International Conference on, pages 4–11. IEEE, 1999.

[3] F. Baude, D. Caromel, and M. Morel. From distributed objects to hier-
archical grid components. In International Symposium on Distributed
Objects and Applications (DOA), Catania, Sicily, Italy, 3-7 November,
Springer Verlag, 2003. Lecture Notes in Computer Science, LNCS.

[4] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood. Cloud types
for eventual consistency. In Proceedings of the 26th European Confer-
ence on Object-Oriented Programming, ECOOP’12, pages 283–307,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-31056-0.

[5] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumeJava: easy, efficient data-parallel
pipelines. In ACM Sigplan Notices, volume 45, pages 363–375. ACM,
2010.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:
elastic execution between mobile device and cloud. In Proceedings
of the sixth conference on Computer systems, pages 301–314. ACM,
2011.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: making smartphones last longer with
code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–62. ACM, 2010.

[8] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[9] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: code offload by migrating execution transparently. In Pro-
ceedings of the 10th USENIX conference on Operating Systems Design
and Implementation, pages 93–106. USENIX Association, 2012.

[10] A. Gupta, E. Ababneh, R. Han, and E. Keller. Towards elastic op-
erating systems. In Proceedings of the 14th USENIX conference on
Hot Topics in Operating Systems, pages 16–16. USENIX Association,
2013.

[11] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR
formalism for artificial intelligence. In Proceedings of the 3rd inter-
national joint conference on Artificial intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Pub-
lishers Inc.

[12] F. Huet, D. Caromel, and H. E. Bal. A High Performance Java Middle-
ware with a Real Application. In Proceedings of the Supercomputing
conference, Pittsburgh, Pensylvania, USA, Nov. 2004.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. ACM
SIGOPS Operating Systems Review, 41(3):59–72, 2007.

[14] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility
in the Emerald system. ACM Transactions on Computer Systems
(TOCS), 6(1):109–133, 1988.

[15] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In Acm Sigplan Notices, volume 44, pages 227–242. ACM,
2009.

[16] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems (TOCS), 7(4):321–
359, 1989.

[17] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Alchemi: A. net-
based enterprise grid computing system. In International Conference
on Internet Computing, pages 269–278, 2005.

[18] R. K. Ma, K. T. Lam, C.-L. Wang, and C. Zhang. A stack-on-demand
execution model for elastic computing. In Parallel Processing (ICPP),
2010 39th International Conference on, pages 208–217. IEEE, 2010.

[19] E. Meijer, B. Beckman, and G. Bierman. Linq: reconciling object,
relations and xml in the. net framework. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data,
pages 706–706. ACM, 2006.

[20] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-
havapeddy, and S. Hand. CIEL: A universal execution engine for dis-
tributed data-flow computing. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’11,
pages 9–9, Berkeley, CA, USA, 2011. USENIX Association.

[21] J. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: Distributed ap-
plications through software modularization. In R. Cerqueira and
R. Campbell, editors, Middleware 2007, volume 4834 of Lecture Notes
in Computer Science, pages 1–20. Springer Berlin Heidelberg, 2007.
ISBN 978-3-540-76777-0.

[22] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings
of the 8th USENIX conference on Operating systems design and im-
plementation, pages 1–14, 2008.

[23] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski,
V. Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde. Swift: Fast, re-
liable, loosely coupled parallel computation. In Services, 2007 IEEE
Congress on, pages 199–206. IEEE, 2007.

[24] W. Zhu, C.-L. Wang, and F. C. Lau. Jessica2: A distributed java
virtual machine with transparent thread migration support. In Cluster
Computing, 2002. Proceedings. 2002 IEEE International Conference
on, pages 381–388. IEEE, 2002.

