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Abstract. Current programming languages are still underdeveloped for the con-
struction of well-structured concurrent software systems. They typically impose 
many unnecessary and unacceptable compromises and/or workarounds due to a 
multiplicity of different suboptimal concepts. With regard to object-orientation, 
one can identify references, methods and inheritance as such inappropriate con-
structs.  

To overcome this unfavourable situation, we have designed and implemented 
a substantially new programming language which integrates a general 
component notion. Three fundamental relations govern components in this 
language: (1) hierarchical composition, (2) symmetric connections with a dual 
concept of offered and required interfaces and, (3) communication-based inter-
actions. With the use of various examples, the advantage of the new component 
language is demonstrated in this paper. 

1 Motivation 

The current trend within the field of software engineering is steadily evolving towards 
programming languages which possess an increasing number of different and 
unfortunately, counterproductive concepts. This growing conceptual incoherence 
often implicates such high complexity, that it decisively limits the flexible con-
struction of structured parallel programs. With regard to the current most prevalent 
object-oriented programming paradigm, we are confronted with three fundamental 
problems: 

• References 
References (or pointers) form semantically very weak constructs for 
describing relations between dynamically created object instances. Arbitrary 
interlinking of object instances is therewith promoted, leading to an object 
graph of non-hierarchical shape1. Clear program structures and general en-
capsulations remain unsupported: any abstraction that consists of a dynamic 
structure of sub-elements is not adequately representable as a hierarchically 
composed object. Instead, this has to be forcibly modelled as a reference-
linked conglomerate of elementary object instances, constituting an un-
differentiated part in the common overall and flat object graph. As a con-

                                                        
1 C.A.R. Hoare unequivocally criticizes the unstructured nature of references and calls their 
introduction in high-level programming languages a step backwards [17, page 20]. 
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sequence, incautious reference copying may quickly lead to incorrect 
program dependencies (aliasing problems [16, 4, 11, 8, 22, 2]). Moreover, 
object exchangeability is strongly impacted by dependencies of outgoing 
object references which are unspecified in object interfaces2.  

• Methods 
Methods fail the realization of a true message passing paradigm, as they in 
fact only constitute procedures (with an implicit reference to the containing 
object). An object is not capable of maintaining an arbitrarily long state-full 
interaction with multiple clients individually, but can only hold a client-
specific context during a method invocation3. The pattern of a method for a 
client-specific interaction is however oversimplified, having only one 
parameterised input followed by one possible output, with generally only one 
value. Methods additionally obstruct concurrency by blocking the invocator 
during their entire execution, instead of running at the expense of the actual 
containing object. 

• Inheritance 
The main object-oriented mechanism for type polymorphism, known as 
inheritance, enforces a groundless hierarchisation and classification of object 
types at compile-time. Unlike a symmetric polymorphism, objects can not be 
represented by multiple, equally important facets, without artificially pre-
ferring some facets as sub-types of others. Inheritance also unsuitably 
combines the two antagonistic concerns of polymorphism and code reuse, 
often resulting in mutual imports of different classes. A special object class, 
which needs to be inherited from a general class for the purpose of type 
polymorphism, should not be obligated to also inherit the general 
implementation of the super-class, as the special class' code is naturally more 
specific than that of the general class4.  

This unfavourable situation demands a total revision of the conceptual basis of current 
programming languages. We are challenged to design new languages, which base on 
a new more powerful paradigm that uniformly enables structured, dynamic, and safe 
software development. Clearly, this requires the liberation of the language concepts 
from the often unreasonable close binding to a concrete machine model. Instead, there 
is a need for real high-level programming languages, which are still effectively 
implementable on different computer platforms. 

In order to achieve this ideal, we have designed and implemented a substantially 
new programming language, which integrates a general high-level component notion. 
Three simple but fundamental relations govern components in this language: (1) 
hierarchical composition without use of explicit pointers, (2) symmetric connections 
with a dual concept of offered and required interfaces and, (3) communication-based 
interactions. The new component language takes a completely different path in com-
                                                        
2 Every element of public visibility in the object may be considered as part of the object’s 
interface. 
3 The iteration over a collection stands for a client-individual state-full interaction that can not 
be accurately expressed with methods (cf. 3.2). 
4 Clearly, the example of a rectangle and square shows this contradiction: a square is a 
geometrical special-case (modelled as a sub-class) of a rectangle but on the other hand, should 
not inherit the general rectangle implementation (with the two variables length and width). 
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parison to existing component models, architecture description languages, and object 
structure specification models (see Section 5). As innovation, it provides a fully-
fledged programming language, which only features high-level concepts for the 
implementation of components. The component language inherently abolishes the 
fundamental deficiencies of current programming models and offers the following 
attractive features: 

• Hierarchical encapsulation 
A component is able to contain any (static or dynamic) structures of com-
ponents and program logic of any complexity. The hierarchically contained 
components and the relations among them are thereby fully encapsulated and 
exclusively managed by the surrounding component. 

• Expressive structural relations 
All structures of components are described by semantically rich relations, 
such that classical references (and pointers) can be entirely abandoned 
without loss of expressiveness: each component contains its own arbitrary 
network of sub-components. This prohibits uncontrolled program dependen-
cies (such as aliasing problems).  

• Intrinsic concurrency 
Concurrency inherently results from the language model, in which all com-
ponents run fully autonomously and have their own intrinsic activities. 
Components only interact via bidirectional message communications (with 
non-blocking message sending). 

• Unrestricted polymorphism 
Components can be represented by an arbitrary set of independent interfaces, 
activating unrestricted symmetric polymorphism in total separation from 
implementation reuse. A new type description ensures the correct handling 
of polymorphic components. 

• Interoperability 
Although the component language is designed for general purposes (except 
machine-close programming) and common programs are entirely develop-
able in components, the language also permits safe interoperability due to the 
guaranteed encapsulation. Terminal components, which do not contain sub-
components, may be just as well implemented in any programming 
language, such as for the purpose of machine-specific implementations.  

1.1 Contributions 

The contributions of this paper can be summarised as follows: 
• The presentation of a new programming language with an integrated general 

component notion for structured parallel programming. 
• A comparison of the new language with classical object-orientation, showing 

the advantage by means of practical examples. 
• The description of a complete implementation of the programming language, 

comprising compiler and runtime system. 
The remainder of the paper is organised as follows; Section 2 presents the concepts of 
the new programming language and explains them by means of illustrative examples. 
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Section 3 shows practical examples of the new language and compares them with 
object-orientation. Section 4 describes the implementation of the programming 
language and also gives an experimental evaluation of the system. Section 5 discusses 
related work, which is finally followed by a conclusion. 

2 Component Language 

The new programming language follows the principle that any program forms a 
component which may be constructed again from an assembly of components and so 
on. With this paradigm of stepwise refinement, complex systems can be built with 
abstract program elements that hide detailed logic from a higher abstraction level.  

A component5 constitutes a closed program unit (black box) that encapsulates an 
arbitrary assembly of sub-components, together with runtime state and behaviour. 
Components are only allowed to have external program dependencies over explicitly 
defined interfaces. An interface represents an external facet of a component and thus 
establishes an explicit interaction point between the component and its exterior 
environment. Each component offers an arbitrary number of own interfaces and also 
requires an arbitrary number of foreign interfaces that belong to other external com-
ponents6.  

By way of a first example, let us consider a standard house, which has the external 
facets of a residence and a parking space, requiring both electricity and water supplies 
from outside. The house may be described as a component called StandardHouse, 
which offers both a Residence and ParkingSpace interface (see Fig. 1). In addition, 
the house requires the foreign Electricity and Water interfaces from other external 
components. Clearly, all interfaces of the component have equal rights, i.e. there is no 
artificially preferred interface. With regard to the example, this means that the 
characterizations of a residence and parking space are equally important facets of the 
house.  

INTERFACE Residence; (* … *) 
INTERFACE ParkingSpace; (* … *) 
INTERFACE Electricity ; (* … *) 
INTERFACE Water; (* … *) 

COMPONENT StandardHouse  
  OFFERS Residence, ParkingSpace 
  REQUIRES Electricity , Water;  
  (* implementation *) 
END StandardHouse; 

 

Fig. 1. A component 

                                                        
5 A component here always means a runtime instance of a component template.  
6 A variety of other component definitions can be found in [26, Chapter 11]. 
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Arbitrarily many component instances (also simply called components) can be created 
from the same component template (also called component type7). In the example 
above, the program describes the component template, which can in turn be used to 
create as many house component instances as needed. One such possible instance of a 
house is depicted by the diagram in Fig. 1. 

The component language is based upon three fundamental relations between com-
ponents:  

• Hierarchical composition 
Each component can be hierarchically composed, by containing an arbitrary 
assembly of component instances. The contained sub-components are fully 
encapsulated by the surrounding super-component. 

• Interface connections 
An arbitrary network of components can be built by connecting the required 
interfaces of components to corresponding offered interfaces of other com-
ponents. A component only constructs the network of its sub-components. 

• Communication-based interactions 
Components can interact via interfaces by message communications. An 
individual communication channel is maintained between a component, 
which offers an interface, and each component, which uses the interface8. 

The component notion is designed to cover any conceivable encapsulated program 
unit and to enable higher generality than the classical component abstractions of 
objects and modules. For that reason, the general components establish the sole 
building units of the language. 

2.1 Component Instances 

Component instances must always be declared in the program scope of their 
containing super-component. The declaration of an instance requires a description of 
the corresponding component type (component template), in order to ensure the 
correct handling of instances. The concrete component type is one possibility for such 
a description. For example, house1 and house2 can be declared as two instances of the 
StandardHouse component type: 

house1, house2: StandardHouse 

In many cases, it is however necessary to declare component instances without 
statically fixing a specific type. Therefore, as another possibility, a component 
instance is also declarable in abstract terms, by simply postulating a set of offered and 
required interfaces. The example below shows such an abstract declaration of a 
building component instance, with the postulated offered interfaces Residence and 
ParkingSpace, and the required interfaces Electricity and Water.  

building: ANY(Residence, ParkingSpace | Electricity, Water) 

                                                        
7 A component instance has only one type, i.e. the concrete template from which it is created. 
8 Notably, the communication between components is fully symmetric and does not entail 
"inverse programming" by means of event-orientation. 
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Using this declaration, the component instance can be of any component type that 
fulfils the following requirements:  

1. The component type offers at least the interfaces which are postulated as 
offered by the declaration (i.e. Residence and ParkingSpace). These inter-
faces are always guaranteed to be provided by the declared component 
instance.  

2. The component type requires at most the interfaces which are postulated as 
required by the declaration (i.e. Electricity and Water). These interfaces have 
to be provided by the environment of the declared component instance, 
before the component’s offered interfaces can be used. 

Applying the rules above, the following townHouse component may well be of the 
StandardHouse type. Conversely, the oldHouse component can not represent a 
StandardHouse as no required Electricity interface is postulated. 

townHouse: ANY(Residence | Electricity, Water, CentralHeating); 
oldHouse: ANY(Residence | Water) 

A static declaration of component instances is not always applicable as in some cases, 
the number of component instances may be determined only at runtime. Hence, it is 
also possible to declare a dynamic collection of component instances with the same 
type description. An index, qualified by a list of comparable data values, thereby 
allows the dynamic identification of a component within the collection. For example, 
the following declaration defines a collection of components of the StandardHouse 
type, requiring a street number and name to identify an instance.  

house[number: INTEGER, street: TEXT]: StandardHouse 

With this declaration, the following component instances (amongst others) may be 
accessed.  

house[12, "Market Street"] house[3, "First Avenue"] house[100, "Grand Boulevard"] 

2.2 Hierarchical Composition 

A component can be hierarchically composed, by containing an arbitrary static or 
dynamic number of sub-components. The sub-components are fully encapsulated and 
exclusively managed by the surrounding super-component, such that the inner 
components are completely invisible and inaccessible outside the super-component. 

The program below delineates a hierarchical composition with the example of a 
StandardHouse component, which contains a garage and two floors as sub-
components (see Fig. 1). In this language, variables enable hierarchical compositions 
by representing separate containers, in which a component instance with a 
compatible type can be stored. 

COMPONENT StandardHouse OFFERS Residence, ParkingSpace REQUIRES Electricity , Water; 
  VARIABLE garage: StandardGarage; groundFloor, firstFloor : ANY(Rooms | Electricity, Water);  
  BEGIN  
   NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor) 
END StandardHouse; 
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As a variable is empty by default, a component instance has to be created within it by 
the NEW-statement. If an abstract type description is declared for the variable (ANY-
construct), the component type has to be explicitly specified as second parameter (see 
the two last NEW-statements in the example above). 
 

 

Fig. 2. A hierarchical composition of components 

Naturally, a variable is also capable of storing a dynamic collection of component 
instances:  

VARIABLE room[number: INTEGER]: HotelRoom; 
FOR i := 1 TO N DO NEW(room[i]) END 

Variables are only defined locally in a program scope, such that they directly imply a 
hierarchical lifetime dependency between the surrounding instance and the internal 
components. 

2.3 Component Networks 

Components systematically decompose programs into separated logical parts, with 
precisely defined dependencies in the form of offered and required interfaces. 
Networks of component instances can be built by explicitly connecting each required 
interface to one with an equal name which is offered by another component. The 
following example of a small city demonstrates the construction of such a network of 
component instances. By means of the CONNECT-statement, the required Water 
interface of house1 is for instance connected to the offered Water interface of river1. 
(The offered interface is thereby implicitly defined by the first argument.) The 
resulting component network is visualised in Fig. 3. 

COMPONENT HydroelectricPowerPlant OFFERS Electricity REQUIRES Water; (* ... *) 
COMPONENT River OFFERS Water; (* ... *) 

VARIABLE 
  house1, house2: StandardHouse; 
  powerPlant: HydroelectricPowerPlant; 
  river1, river2: River; 

BEGIN 
  NEW(house1); NEW(house2); NEW(powerPlant); NEW(river1); NEW(river2); 
  CONNECT(Water(house1), river1); CONNECT(Electricity(house1), powerPlant); 
  CONNECT(Water(house2), river2); CONNECT(Electricity(house2), powerPlant);    
  CONNECT(Water(powerPlant), river2) 
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Fig. 3. A component network 

Component networks can of course also be constructed with a dynamic number of 
component instances, as illustrated by the following program9. 

VARIABLE 
  house[postalAddress: TEXT]: StandardHouse; 
  powerPlant: HydroelectricPowerPlant; 
  river[number: INTEGER]: River; 

BEGIN 
  FOR n := 1 TO N DO NEW(river[n]) END; (* N >= 1 *) 
  NEW(powerPlant); CONNECT(Water(powerPlant), river[1]); 
  REPEAT 
    location := postal address of the new house;  
    NEW(house[location]); CONNECT(Electricity(house[location]), powerPlant);  
    n := number of nearest river; 
    CONNECT(Water(house[location]), river[n]) 
  UNTIL no free building site available 

Furthermore, a component may also redirect the implementation of its own offered 
external interfaces to its sub-components. For this purpose, an offered external 
interface (e.g. ParkingSpace of the StandardHouse below) can be connected to an 
offered interface with the same name that belongs to a sub-component (e.g. garage). 
Analogously, a required interface of a sub-component (e.g. the Water interface of the 
groundFloor) is also connectable to a corresponding interface, which is required by 
the super-component from outside.      

COMPONENT StandardHouse OFFERS Residence, ParkingSpace REQUIRES Electricity , Water; 
  VARIABLE garage: StandardGarage; groundFloor, firstFloor: ANY(Rooms | Electricity, Water);  
  BEGIN 
    NEW(garage); NEW(groundFloor, Floor); NEW(firstFloor, Floor); 
    CONNECT(ParkingSpace, ParkingSpace(garage));  
    CONNECT(Electricity(groundFloor), Electricity); CONNECT(Water(groundFloor), Water); 
    CONNECT(Electricity(firstFloor), Electricity); CONNECT(Water(firstFloor), Water) 
END StandardHouse; 

Fig. 4 depicts the corresponding connections for the example above. As can be seen, 
hierarchical composition inherently enables implementation reuse. The Standard-
House component can be flexibly built by integrating the existing StandardGarage 
implementation as a sub-component and by redirecting the ParkingSpace interface 
                                                        
9 The elementary statements of the language are similar to the Oberon language [30, 31]. 
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correspondingly. In contrast to object-oriented inheritance, the concerns of reuse and 
polymorphism are fully separated here. 

 

Fig. 4. Redirected interfaces 

In the preceding examples, the pointer issue of ordinary programming languages is 
overcome: interface connections can arrange arbitrary component networks, which 
are always fully encapsulated by the surrounding component. This is due to the 
following two important distinctions: 

1. A connection only constitutes a link which is exclusively set and controlled 
by the surrounding component, whereas a pointer (and a classical reference) 
forms a data value that can be freely copied from one to another object. 

2. A connection establishes a symmetric link between a required and an offered 
interface, whereas a reference/pointer asymmetrically links a target from the 
reference holder and may not be visible outside the holder. 

2.4 Communication-Based Interactions 

Interfaces enable arbitrarily general communication-based interactions between 
components. Two components, which are connected by a required and offered inter-
face, can communicate over the interface by bidirectional message exchange. The 
feasible sequences of message transmissions during the communication have to be 
explicitly defined by a protocol in the interface. As an example, the HotelService 
interface below describes the protocol for the communication between a component, 
which offers this interface, and an external component, which uses it (see the scenario 
in Fig. 5). 

INTERFACE HotelService; 
  {  
     IN CheckIn  
     (   
        OUT AssignedRoom(number: INTEGER)  
        { IN EnterRoom IN ExitRoom } 
        IN CheckOut OUT Bill(price: INTEGER) [ IN DirectPayment(m: Money) ]  
     |  OUT FullyBooked   
     )  
   } 
END HotelService; 

StandardHouse 

ParkingSpace 

Residence 

garage 
Standard 
Garage 

Parking-
Space 

groundFloor 

Floor 
Rooms 

Electricity 

firstFloor 
Floor 

Rooms 

Water 

Water 

Electricity 



10 

A protocol is specified as a regular expression in the Extended Backus Naur 
Formalism (EBNF) [29]10. The symbols in the protocol denote messages that are 
exchanged during the communication. Each message has a declared transmission 
direction (either IN or OUT), an identifier (e.g. CheckIn), and an optional list of 
parameters (e.g. number). The IN-direction defines that a message is sent to the 
component offering the interface, while the OUT-direction characterises the opposite 
direction of transmission. According to this, the communication protocol of the 
HotelService interface can be understood as the temporal series of messages outlined 
in Fig. 5.  

 

Fig. 5. Message communication via an interface 

The parameters of a message represent component instances that are carried within a 
message. Transmitted instances are always sent as copies which have the same 
internal state and network of sub-components like the original (deep copy), and can in 
turn be safely plugged into the receiver. Naturally, really huge instances (e.g. files) 
should not to be transmitted as copies but should be rather represented by unique 
identifiers (e.g. file descriptors or invariant file path expressions). Such identifiers 
however do not form inbuilt language constructs (such as classical pointers) but have 
to be explicitly defined by the programmer itself, using normal data values or 
components. Consequently, a unique identifier can be utilised to interact (via 
connected interfaces) with the component that contains the actual huge instance (e.g. 
with the file system). 

An offered interface of a component can be used in parallel by all the components 
which are connected to the corresponding interface, as well as by the containing 
super-component itself. The component which offers the interface plays the role of 
the server of the interface, whereas the other components which use the interface act 
as clients of this interface. For each client of an interface, the server automatically 
maintains a separate state-full11 communication channel. Hence, some Customer com-
ponents may simultaneously perform their individual hotel check-in, while other 

                                                        
10 In EBNF, a concatenation of expressions represents a sequence, square brackets [ ] indicate 
an optional expression, curly brackets { } describe a repetition of zero or arbitrary times, and a 
vertical bar | denotes an alternative between two expressions. By default, concatenation has a 
stronger binding than an alternative. The default binding order can be explicitly changed with 
round brackets ( ). 
11 State-full means that the component saves the context for the interaction with each individual 
client. 
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clients are in another state of communication with the same Hotel instance (see Fig. 
6). 

 

Fig. 6. Multiple parallel client communications 

The following program code sketches the implementation of a communication 
between a Customer and a Hotel component. The Hotel component contains an 
implementation block for the offered HotelService interface. This implementation 
block is automatically incarnated as a separate process for each client and runs as an 
individual service agent for the client. Alternatively, the Customer component may 
directly communicate via its required interface.  

 

The send statement (denoted with "!"), delivers a message to the other communication 
side, by filling the message with copies of the specified parameter arguments. A copy 
forms an identical clone of the original, such that the clone contains the same internal 
state, which includes the network of sub-components. These internal components are 
again recursively copied. Conversely, the receive statement (denoted with "?") awaits 
the arrival of a specific message from the other communication side and accepts the 
message on arrival. The contained component instances of the received message are 
eventually assigned to the corresponding variables, which are specified as parameter 
arguments. A receive statement blocks the execution as long as the message is not 
received. The receive-test function (an expression denoted with "?")12, tests whether a 
specific message can be received from a specific interface by first awaiting any 
message input. The receive-test function hence blocks the execution until the arrival 
of any message from the interface but does not yet accept the message nor assign the 
message parameters13.  

Within the implementation block, the send- and receive-statements without 
specified interface directly refer to the corresponding client, which is served by the 
block. Conversely, for the communication in the role of a client, the interface has to 
be explicitly specified.  
                                                        
12 Notably, a receive-test function is uniquely distinguishable from a receive-statement, as it 
forms a syntactical expression and not a statement. 
13 Additionally, there is also a non-blocking INPUT-function to check the arrival of a message. 

COMPONENT Customer REQUIRES HotelService; 
BEGIN 
  HotelService!CheckIn; (* send message *) 
  IF HotelService?AssignedRoom THEN(*receive test*) 
    HotelService?AssignedRoom(n) (*accept message*) 
    (* … *) 
  ELSE (* fully booked *) 
    HotelService?FullyBooked (* accept message *) 
  END 
END Customer; 
 

COMPONENT Hotel OFFERS HotelService; 
  IMPLEMENTATION HotelService; 
  BEGIN 
    WHILE ?CheckIn DO {EXCLUSIVE} 
        ?CheckIn; (* accept message *) 
        IF (*free room*) THEN !AssignedRoom(n) 
        ELSE !FullyBooked END 
    END 
  END HotelService; 
END Hotel; 
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active communication 
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It is dynamically checked that all required interfaces of a component are connected 
when a communication is initiated via one of its offered interface. During a com-
munication between a client and server, all messages have to be sent and received 
according to the defined protocol. The fulfilment of the protocol is dynamically 
monitored for each communication, and in the case of a violation, a runtime error is 
generated. When a client is disconnected from a component, the implicit END 
message (without parameters), is automatically delivered to the server side and may 
be optionally accepted by the server.  

 In the course of the subsequent application of the component language, some of 
the aforementioned elements for component implementations will be explained in 
more detail when required. Those, who desire a complete specification of the 
component language, are referred to the language report [9]. 

3 Examples 

This section illustrates practical examples of the component language, by contrasting 
them to corresponding object-oriented solutions.   

3.1 Producer-Consumer 

The first example demonstrates a producer-consumer scenario, where both producer 
and consumer autonomously interact in parallel with a common bounded buffer.  

COMPONENT Producer REQUIRES DataAcceptor; 
  VARIABLE i: INTEGER; 
  BEGIN FOR i := 1 TO 100000 DO DataAcceptor!Element(i) END 
END Producer; 

INTERFACE DataAcceptor; 
  { IN Element(x: INTEGER) } 
END DataAcceptor; 

COMPONENT Consumer REQUIRES DataSource; 
  VARIABLE i: INTEGER; 
  BEGIN WHILE DataSource?Element DO DataSource?Element(i) END 
END Consumer; 

INTERFACE DataSource; 
  { OUT Element(x: INTEGER) } 
END DataSource; 

COMPONENT BoundedBuffer OFFERS DataAcceptor, DataSource;  
  CONSTANT Capacity = 10;  
  VARIABLE a[position: INTEGER]: INTEGER; first, last: INTEGER; finished: BOOLEAN; 

  IMPLEMENTATION DataAcceptor; 
  BEGIN 
    WHILE ?Element DO {EXCLUSIVE} 
      AWAIT(last-first < Capacity); ?Element(a[last MOD Capacity]); INC(last) 
    END; 
    BEGIN {EXCLUSIVE} finished := TRUE END 
  END DataAcceptor; 
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  IMPLEMENTATION DataSource; 
  BEGIN 
    REPEAT {EXCLUSIVE} 
      AWAIT((first < last) OR finished); 
      IF first < last THEN !Element(a[first MOD Capacity]); INC(first) END 
    UNTIL finished 
  END DataSource; 

  BEGIN first := 0; last := 0; finished := FALSE 
END BoundedBuffer; 

In the previous example, the component body of the BoundedBuffer initialises the 
buffer, before interactions over offered interfaces are accepted. The server-side 
processes (service agents) of the offered interfaces are internally synchronised by 
using an exclusive monitor lock on the component instance, in combination with 
AWAIT-statements. An AWAIT-statement blocks the execution until the fulfilment 
of a local condition, by temporarily releasing the monitor lock. This monitor-oriented 
synchronization is only applicable inside the component instance, and forms a 
supplement to inter-component interactions, which are merely communication-based. 
The consumer-producer program may consequently be set up as follows (see Fig. 7): 

COMPONENT Simulation; 
  VARIABLE buffer: BoundedBuffer; producer: Producer; consumer: Consumer; 
BEGIN 
  NEW(buffer); NEW(producer); NEW(consumer); 
  CONNECT(DataAcceptor(producer), buffer); CONNECT(DataSource(consumer), buffer) 
END Simulation; 

Producer and consumer immediately start to interact with the buffer, when the 
Simulation is created and the components have been appropriately connected. 
Naturally, one can also connect multiple producers and multiple consumers to the 
same buffer. 

 

Fig. 7. Producer-consumer scenario 

In object-orientated languages, such a scenario entails the explicit incarnation of 
threads, which run as concurrent procedural executions on the passive objects. 
Concurrency is therewith not only poorly supported as a secondary programming 
element (mostly provided by a separate library) but thread interactions are also only 
insufficiently describable. Threads may only interact implicitly by operations on 
shared resources, whereas the autonomously running components of our language 
interact in a clearly defined way by bilateral message exchange according to a formal 
protocol.  

3.2 Digital Library 

By way of a second example, we program a digital library which contains a dynamic 
collection of books. In the library, generic books with the offered Book interface can 
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be stored. The library is usable in parallel by an arbitrary number of connected 
customer components (see Fig. 8), which may request digital copies of books or may 
also list the book catalogue. Book references are directly modelled as what they really 
are: unique identities in the form of international standard book numbers (ISBNs). 
These real references do not involve any specific language concept but only form self-
defined identifiers of component instances. Hence, real references imply neither a 
direct access link nor an existence guarantee. An identified book can be transmitted as 
a copy within a message from the library to the corresponding customer. The program 
code for the digital library is: 

INTERFACE Library ; 
   { IN RequestBook(isbn: TEXT) (OUT Book(b: ANY(Book)) | OUT Unavailable)  
   | IN ListCatalogue { OUT BookReference(isbn: TEXT) } OUT EndOfList } 
END Library; 

COMPONENT DigitalLibrary  OFFERS Library; 
  VARIABLE book[isbn: TEXT]: ANY(Book); 

  IMPLEMENTATION Library ; 
  VARIABLE isbn: TEXT; b: ANY(Book); 
  BEGIN 
    WHILE ?RequestBook OR ?ListCatalogue DO 
      IF ?RequestBook THEN {EXCLUSIVE} 
        ?RequestBook(isbn);  
        IF EXISTS(book[isbn]) THEN !Book(book[isbn]) ELSE !Unavailable END 
      ELSE {SHARED} 
        ?ListCatalogue; FOREACH isbn OF book DO !BookReference(isbn) END; !EndOfList 
      END 
    END 
  END Library; 
END DigitalLibrary; 

 

Fig. 8. Encapsulated library 

Again, a few explanatory remarks may be helpful. The books in the library are stored 
within a dynamic component collection (cf. Section 2.1). To identify the contained 
instances in the collection, ISBNs are used as indexes. The inbuilt EXISTS-function 
tests whether a defined element is contained in the dynamic collection. If present, a 
copy of the appropriate book is sent. Note that the case of an inexistent book can be 
accurately communicated by an alternative message (named Unavailable), whereas in 
object-orientation, an artificial null reference often represents this case. The state-full 
process of listing the book catalogue, involves a shared lock of the library, permitting 
concurrent iterations by other users. During iterations, any modification is however 
prevented by exclusive locks. The FOREACH-statement allows the iteration over all 
instances in a collection, where each iteration step assigns a valid index to the 
specified iteration variable.  
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3.2.1 An Object-Oriented Library as Contrast 

Unlike our language, an object-oriented program can not accurately describe the 
encapsulation of dynamic object structures inside other objects, as object-orientation 
does not feature a hierarchical composition relation. Therefore, an object-oriented 
language can not guarantee the encapsulation of books in the library but compels the 
programmer to allocate the internal books of the library as normal objects in the 
system-wide flat object graph. Very cautious programming is then required to prevent 
passing out references to internal books of the library in error. The following object-
oriented program illustrates this situation:  

class Book { 
  string isbn; string content; Book[] references; 
  void Annotate(string note) { content += note; } 
} 

class Library  { 
  Book[] books; 
  Book RequestBook(string isbn) { 
    for (int i = 0; i < books.Length; i++)   
      { if ((books[i] != null) && (books[i].isbn == isbn)) { return books[i].Clone(); }  } 
    return null; /* null means unavailable */  
  } 
} 

Analogous to the component-oriented program, the requested book objects are also 
transferred as copies between the library and the customer, as the client could 
otherwise modify the original book in the library. However, despite this precaution, 
the (directly or indirectly) referenced books in the library may then still be incorrectly 
accessed by an external customer (see following program fragment and also Fig. 9).  

class Customer { 
   Library library; 
   void IncorrectUse { 
      Book book = library.RequestBook("3-468-11124-2");  
      Book x = book.reference[0]; 
      read(x.content); /* forbidden reading use of an internal book of the library */ 
      x.Annotate("personal note"); /* forbidden modifying use of an internal book of the library */ 
   } 
} 

 

Fig. 9. Incorrect referencing  

This demonstrates how vulnerable object-oriented programs are, by the fact that 
references can conceptually link arbitrary objects in the system and can be freely 
copied around. Hence, it may be argued that object-oriented references ought not to 
be used to represent book references in this example. Another approach of only 
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passing read-only references [22], does not give any sustainable solution either, since 
books may still be read without permission. 

Catalogue listing is also only inadequately realizable in object-orientation, because 
the client-individual iteration process has to be forcibly outsourced to an artificial 
iterator object. As a consequence, the external iterator has to store then a reference 
(or other specific information) that directly breaks into the internal library structure 
(see Fig. 10). (This encapsulation breach is often considered as a counter-example for 
the proposed object-oriented encapsulation mechanisms [11, 22].)  

 

Fig. 10. Iterator object  

4 Language Implementation 

The presented component language has been completely implemented, comprising a 
compiler and runtime system, which are based on the Bluebottle operating system 
[10, 23]. The runtime system is designed as a stack-based virtual machine, supporting 
an intermediate language that consists of a sensibly selected combination of both 
primitive functionality (e.g. integer addition) and more complex functionality (e.g. 
message sending and receiving). These complex instructions directly correspond to 
fundamental high-level language abstractions. The compiler generates the inter-
mediate code, which is in turn automatically transformed to the backend machine 
code by the virtual machine. Backend code generation is only initiated at the time 
when the intermediate code is loaded. 

For hierarchical composition, component instances are dynamically organised in 
the linear heap memory with appropriate memory indirections. An internal data 
structure automatically manages an indexed collection of component instances. Here, 
an adaptive data structure may be reasonable, e.g. a simple linear list for small 
collection sizes and a B-tree for larger sizes. Due to the hierarchical lifetime 
dependencies of compositions, automatic garbage collection for memory-safe runtime 
management is no longer needed. Components can be directly de-allocated on the 
disposal of the super-component, without suffering extensive (and generally system-
blocking) garbage collection. 

High and efficient parallelism is most critical for the adequate runtime support of 
component instances and their internal processes. For this purpose, the Active Object 
technology [23] of the Bluebottle operating system is advantageous, as it provides 
particularly light-weighted parallelism with low-cost context switches. Of course, 
there is still much potential and need for further improvement of concurrency.  

The communication between two components is implemented by an internal 
bidirectional message channel. These channels have bounded buffer sizes, to avoid 
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dynamic memory allocations on message sending. The communication protocol is 
dynamically monitored by using a finite state machine, that is automatically generated 
by the backend compiler from the protocol specification.  

Table 1 gives an impression of the system's performance and scalability by means 
of experimental measurements with three test applications (available at [9]): (1) a 
producer-consumer scenario with 100,000 exchanged elements, (2) a small city 
simulation (as in Section 2) with 100 houses, each consuming 1,000 units of water 
and electricity, and (3) a large city simulation with 1,000 houses. Whereas the small 
city simulation only involves about 500 components and 300 processes, the large city 
requires more than 5,000 components and 3,000 processes. The results are first com-
pared to analogous programs written in Active C# [13] and to a Windows 
implementation of AOS (called WinAOS [12]). On a Intel P4, 2.6GHz with 2 logical 
processors, our component system shows a substantially higher performance than the 
Windows-based systems and also scales higher with regard to the number of parallel 
processes. The performance advantage is mainly due to the fast context switches of 
processes in the underlying Bluebottle system; direct context switches are for example 
performed on message sending and receiving, if the other communication partner is 
already waiting for a message transfer. Compared to the traditional thread-based 
systems, the higher scalability results from the lower stack overhead of the active 
object technology. To estimate the costs of the virtual machine of the component 
system, the performance is also measured with analogous Active Oberon programs, 
which directly run on the native Bluebottle system (whereon our virtual machine runs 
as well). As the difference between both systems shows, the overhead of component 
language is relatively small, i.e. not higher than about 10 percent. 

Table 1. Comparison of execution times (in seconds) 

Test application Component System Active C# WinAOS Native Bluebottle 

Producer-consumer 1.6 4.4 10 1.6 

Small city simulation 2.9 360 24 2.7 

Large city simulation 30 - (out of memory) - (out of memory) 28 

5 Related Work 

The presented language is to our knowledge, the first general-purpose programming 
language which directly integrates a general component notion with only high-level 
programming concepts, and which is free of the classical problematic constructs of 
references, methods and inheritance (see Section 1). Some fundamental concepts of 
this language are however similar to previous works. 

Interface connections. The Microsoft COM [27, 28] wiring mechanism (see [26], 
Section 10.3) with incoming and outgoing interfaces has similarities to the offered 
and required interfaces in our language, but is only designed to support asynchronous 
events using classical method calls. Hence, conventional pointers (or references) still 
establish the typical component relations in COM. The model of provided and 
required interfaces is also often used in architecture description languages [3, 20, 21]. 
However, these languages do not form real programming languages but just allow the 
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formal description and specification of software architectures. Dynamic structures of 
components are generally not describable, as the number of components is either 
static or fixed by a parameter. Moreover, interactions have to be either inadequately 
represented by method-based interfaces [21], or by low-level message channels 
(called ports), which are often even unidirectional (like electronic wires) [20]. Other 
architecture description languages [3] do not have dual provided and required inter-
faces, but instead necessitate artificial constraints (called glue) to bind a set of ports. 
With these low-level ports, each client requires a separate interface port for individual 
communication but a component is typically unable to support an arbitrary (dynamic) 
number of ports.  

Symmetric polymorphism. The symmetric support of offered interfaces is 
comparable to COM and Zonnon, but in our language, interfaces are merely com-
munication-oriented. Interfaces are also often provided together with a special 
concept of reusable implementation parts, such as mixins [5] or traits [24]. However, 
in our language, composition and interface redirection inherently permit flexible 
implementation reuse without needing such an artificial code mixing mechanism. 

Communication-based interactions. The paradigm of message communication 
has been introduced with CSP [18] and realised in Occam [19]. However, a decisive 
distinction to our language model is that a component (called process) in CSP/Occam 
can not interact with multiple interface clients individually, but has to explicitly 
handle all possible overlapping of client interactions via a time-multiplexed 
communication channel. The formal Actor model [15, 1], which also proposes 
communicating parallel components, requires the explicit identification of 
communication partners by means of references (called mail addresses). This does not 
only impede clearly described client-individual communications, but also implicates 
the elementary problems of references like in object-orientation. Our communication 
model with individual clients is rather influenced from the activity concept of Active 
C# [13] and Zonnon [14]. Though, in Active C# and Zonnon, clients have to 
explicitly invoke an activity and interact with the returned dialog, whereas this 
component language permits direct client-individual communications via interfaces. 
A further distinction can be made as the component language supports explicit 
messages with a set of data values and instances that are carried in parameters. 
Conversely, data values and explicit tokens/tags have to be transmitted as single items 
in Zonnon, Active C#, CSP, and Occam. 

Component systems. A variety of other component models have been invented to 
enhance structuring, deployment, extendibility and reusability of software [26]. Java 
Beans, Enterprise Java Beans, CORBA, Microsoft COM, and the Microsoft .NET 
framework are only some representatives of popular component systems. All these 
models however have the same fundamental deficiencies with regard to references 
and methods (see Section 1). With the exception of COM, object-oriented component 
models also integrate the inheritance relation and its discussed disadvantages. 

Other related work. In addition, many efforts have been made to tackle the 
problems of references with visibility restrictions [8], ownership models [16, 4, 11, 
22, 6, 2], region models [7], encapsulation policies [24] and many more. The common 
problem of all these approaches is that they are still based on the classical low-level 
model of references and thus require complicated rule systems (mostly integrated in 
type systems), to ensure structural conditions. Moreover, these models can generally 
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not describe state-full and client-individual interactions (c.f. iterators in Section 3.2), 
such that the encapsulation has to be forcibly broken up, by using read-only 
references [22], dynamic parameter aliasing [16, 4], or simply normal unrestricted 
references. As conventional references are still supported as standard constructs in 
these models, the majority of objects may nevertheless be exposed as part of the 
system-wide flat object graph.  

6 Conclusion 

The presented component language is a radically new approach for more powerful 
and structured programming. It integrates a general component notion with 
appropriate high-level programming concepts, to enable structural clarity, high 
dynamicity, together with inherent parallelism. As a result, immanent solutions to the 
various shortcomings of the currently prevalent object-oriented programming 
paradigm can be gained. The complete implementation and the detailed report of the 
component language can be found at [9]. 

Acknowledgments 

I am particularly grateful to Prof. Dr. Jürg Gutknecht for his support and helpful 
advice during this work and for this paper. Many thanks are also due to Dr. Thomas 
Frey, Dr. Felix Friedrich and other colleagues for their constructive reviews and 
suggestions for improvement.  

References14 

1. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, 
1986. 

2. J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy from 
Mechanism. In European Conference on Object-Oriented Programming (ECOOP), June 
2004. 

3. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions 
on Software Engineering and Methodology, 6(3): 213-249, July 1997. 

4. P.S. Almeida. Balloon Types: Controlling Sharing of State in Data Types. In European 
Conference on Object-Oriented Programming (ECOOP), June 1997. 

5. G. Bracha and W. Cook. Mixin-based Inheritance. In Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA), October 1990. 

6. C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming: Preventing 
Data Races and Deadlocks. In Object-Oriented Programming Systems, Languages, and 
Applications (OOPSLA), November 2002. 

7. C. Boyapati, A. Salcianu, W. Beebee, M. Rinard. Ownership Types for Safe Region-Based 
Memory Management in Real-Time Java. In Programming Language Design and 
Implementation (PLDI), June 2003. 

                                                        
14 With regard to the discussion in Section 3.2, this section lists real references. 



20 

8. B. Bokowski and J. Vitek. Confined Types. In Object-Oriented Programming Systems, 
Languages, and Applications (OOPSLA), November 1999. 

9. L. Bläser. The Component Language. ETH Zurich, Switzerland, 2006. Available from 
http://www.jg.inf.ethz.ch/components. 

10. J. Gutknecht, P. J. Muller, T. M. Frey, et al. The Bluebottle Operating System. ETH 
Zurich, Switzerland. Available from http://www.bluebottle.ethz.ch. 

11. D.G. Clarke, J.M. Potter, and J.Noble. Ownership Types for Flexible Alias Protection. In 
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 
October 1998. 

12. F. Friedrich. The WinAOS Oberon System. ETH Zurich, Switzerland. Available from 
http://www.bluebottle.ethz.ch/winaos. 

13. R. Güntensperger and J. Gutknecht. Active C#. .NET Technologies, May 2004. 
14. J. Gutknecht and E. Zueff, Zonnon Language Report, ETH Zurich, Switzerland, October 

2004. Available from http://www.zonnon.ethz.ch. 
15. C. Hewitt, P. Bishop and R. Steiger. A Universal Modular Actor Formalism for Artificial 

Intelligence, International Joint Conference on Artificial Intelligence (IJCAI), 1973.  
16. J. Hogg. Islands: Aliasing Protection in Object-Oriented Languages. In Object-Oriented 

Programming Systems, Languages, and Applications (OOPSLA), October 1991. 
17. C.A.R. Hoare. Hints on Programming Language Design. Stanford Artificial Intelligence 

Laboratory Memo AIM-224 or STAN-CS-73-403, Stanford University, Stanford, 
California, December 1973.  

18. C.A.R. Hoare. Communicating Sequential Processes. Communications of the ACM, 
21(8):666-677, 1978. 

19. Inmos Ltd. Occam 2 Reference Manual. Prentice-Hall, 1988.  
20. J. Magee and J. Kramer. Dynamic Structure in Software Architectures. In Fourth 

Symposium on the Foundations of Software Engineering (FSE), October 1996. 
21. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Language and Environment for 

Architecture-Based Software Development and Evolution. In  International Conference on 
Software Engineering (ICSE), May 1999. 

22. P. Müller and A. Poetzsch-Heffter. A Type System for Alias and Dependency Control. 
Technical Report 279, Fernuniversität Hagen, 2001. 

23. P. J. Muller. The Active Object System. Design and Multiprocessor Implementation. PhD 
thesis 14755, Department of Computer Science, ETH Zurich, 2002. 

24. N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable Units of 
Behaviour. In European Conference on Object-Oriented Programming (ECOOP), July 
2003. 

25. N. Schärli, S. Ducasse, O. Nierstrasz, and R. Wuyts. Composable encapsulation policies. 
In European Conference on Object-Oriented Programming (ECOOP), June 2004. 

26. C. Szyperski. Component Software, Beyond Object-Oriented Programming. Addison-
Wesley, 1998.  

27. A. Williams. Dealing with the Unknown – or – Type Safety in a Dynamically Extensible 
Class Library. Draft, Microsoft Application Division, 1988. Available from 
research.microsoft.com/comapps/docs/ Unknown.doc. 

28. A. Williams. On Inheritance: What It Means and How to Use It. Draft, Applications 
Architecture Group, Microsoft Research, 1990. Available from research.microsoft.com/ 
comapps/docs/Inherit.doc. 

29. N. Wirth. What can we do about the unnecessary diversity of notation for syntactic 
definitions? Communications of the ACM, 20(11): 822, 823, November 1977. 

30. N. Wirth and J. Gutknecht. The Oberon System. Software – Practice and Experience, 
19(9): 857-893, September 1989. 

31. N. Wirth. The Programming Language Oberon. Software - Practice and Experience, 18(7): 
671-690, July 1988. 


