
A Component-Oriented Language for
Pointer-Free Parallel Programming

Luc Bläser

Computer Systems Institute, ETH Zürich, Switzerland
blaeser@inf.ethz.ch

Abstract. Today’s programming languages typically have substantial
deficiencies with regard to structuring and concurrency. To overcome
these shortcomings, we have developed a new programming language
that is based on a general notion of components with three expressive
relations: (1) hierarchical composition without explicit pointers, (2) con-
nections with a dual concept of offered and required interfaces and, (3)
communication-based interactions. The programming language is imple-
mented by a runtime system that surpasses existing systems in the scal-
ability and efficiency of concurrency.

1 Introduction

The need for developing a new programming language is usually something that
arises in circumstances of an unsatisfactory state of the art. This is also true in
our case, where we find that today’s predominant programming languages lack
the adequate support for constructing modern software systems. More specif-
ically, two most decisive problems can be identified in the currently prevalent
programming languages:

– Structuring. The use of pointers or references principally leads to unstruc-
tured programs, as object instances can be arbitrarily interlinked (with only
some restrictions at the type level). The resulting object graph has no clearly
specified shape and no defined hierarchical structure. This means that an ob-
ject is not capable of encapsulating a sub-structure of objects, since such a
structure has to be modelled as normal pointer-linked objects and may still
be referenced from other logically external instances.

– Concurrency. The increasing need for concurrency cannot be adequately
satisfied by a second-class programming concept such as threading, which
has only been added with hindsight to the procedural programming model.
Not only is the use of concurrency with this approach cumbersome and
inefficient but it is also unsafe, as threads can operate on arbitrary objects
(via method calls) without any clear specification of the potentially accessed
instances. As a result, thread dependencies remain largely unspecified in the
program, such that concurrency is inherently error-prone (e.g. susceptible to
race conditions).

We aim to overcome these weaknesses in our language by way of a new con-
ceptual basis. Instead of featuring classical objects with pointers and methods,
a general notion of components is provided. Components can only be organised
with three expressive relations:

– Hierarchical composition. A component can contain an arbitrary number of
other component instances, which are hierarchically encapsulated.

– Interface connections. A network of components can be built by connecting
the required interfaces of components to corresponding offered interfaces of
other components.

– Communication-based interactions. All components run concurrently and
only interact by means of bidirectional exchange of messages.

The language has already been described in [2] and we here limit ourselves
to a summary of the main concepts. In contrast to existing architecture descrip-
tion languages [4] and other component-oriented programming models (such as
Microsoft COM, or [1]), our language enables dynamic structures of components
and is entirely free of ordinary references, even if compositions are constructed
at runtime.

The programming language is implemented by an efficient runtime system
that runs as a stand-alone operating system. The highlights of the new system
are:

– High scalability. The system supports millions of parallel processes (threads)
on conventional computer machines.

– High performance. The execution speed of concurrent programs is on average
faster by a factor of 2.7 than in conventional systems.

The remainder of this paper is organised in three sections. The new pro-
gramming language is described in Section 2. The runtime system is presented
in Section 3, where the results of experimental measurements are also shown. In
Section 4, we finally draw conclusions for this work.

2 Programming Language

In this language, programs are solely built by components. A component con-
stitutes a closed program unit at runtime which encapsulates state (data values
and sub-components) and behaviour (interactions and functionality). Strict en-
capsulation is enforced, i.e. a component can only be accessed from outside via
explicitly defined interfaces. A component may both offer and require interfaces.
An offered interface thereby represents an external facet of the component itself,
enabling interactions between the component and its outer environment. Con-
versely, a required interface specifies an interface that is to be offered by another
external component. A component is statically defined in the program code by
a template, which allows creating multiple instances of components at runtime
(see Figure 1).

COMPONENT BoundedBuffer OFFERS DataAcceptor, DataSource; (* implementation *) END BoundedBuffer; COMPONENT Producer REQUIRES DataAcceptor; END Producer; COMPONENT Consumer REQUIRES DataSource; END Consumer; static templates BoundedBuffer runtime instances Data- Acceptor Data- Source Producer Data- Acceptor Consumer Data- Source
Fig. 1. Component templates and instances

2.1 Hierarchical Composition

A component is able to contain an arbitrary number of components within its
implementation scope. This is enabled by means of variables, which represent
separate containers in which components can be stored. A variable can either
store a single component (e.g. buffer in Figure 2) or denotes a collection (e.g.
producer[i: INTEGER]), in which a dynamic number of components can be
allocated. In the first case, the component is directly identified by the variable
name, whereas in the latter case, a component in the collection is identified by
the variable name and an index value.

At runtime, components can be created and installed within the variables
(NEW). As a result, the components inside the variables are fully encapsulated
and constitute sub-components of the surrounding instance. No explicit pointers
or references are involved here, as a component is only accessible via its variable
identifier (and index value). Of course, the components need to be appropriately
organised in the memory by using memory indirections. This however happens
automatically in the runtime system and is not visible at the level of the pro-
gramming language.

Components within the same scope may be also connected to networks. For
this purpose, each required interface of a component can be connected to an
interface that is offered by another component. In order to be connectable, the
required and offered interfaces must have the same name (see Figure 2). With
these relations, component networks of arbitrary shape can be constructed under
the control of the surrounding instance. Besides connecting sub-components, the
language also supports connecting the interfaces of the surrounding component
with interfaces of sub-components (see [2]).

With the hierarchical composition, components have an exactly defined de-
allocation time. The deletion of a component directly implies the deletion of
its sub-components. Moreover, a single component may be explicitly deleted by
the programmer and in this case, the component’s interfaces are automatically
disconnected.

COMPONENT Simulation; VARIABLE buffer: BoundedBuffer; producer[i: INTEGER]: Producer; consumer[i: INTEGER]: Consumer; i, n, m: INTEGER; BEGIN (* read n and m from user *) NEW(buffer); FOR i := 1 TO n DO NEW(producer[i]); CONNECT(DataAcceptor(producer[i]), buffer) END; FOR i := 1 TO m DO NEW(consumer[i]); CONNECT(DataSource(consumer[i], buffer) END END Simulation; Simulation Bounded-Buffer Producer Data- Acceptor Producer buffer producer[1] producer[n] ... Consumer Consumer consumer[1] consumer[m] ... Data- Source
Fig. 2. Hierarchical composition

2.2 Concurrency and Communication

Every component runs its own inner processes and only interacts by message
communication. Two components, which are connected, can directly exchange
messages via their connected interfaces. The component which offers the interface
may be regarded as the server, while the other component acts as the client
with regard to this interface. A message transmission involves one side sending
the message and the other one explicitly receiving it. A particular feature is
that the server component maintains a separate communication for each client
individually. This means that each client-server pair a client and server has a
separate communication channel via the interface, such that the server may
communicate with multiple clients in parallel (see Figure 3).

INTERFACE DataAcceptor; { IN Element(x: INTEGER) } IN Finish END DataAcceptor; server client communication Bounded-Buffer Producer Producer
Fig. 3. Message communication

However, two components cannot send and receive messages in an arbitrary
way but must follow a communication protocol. This protocol is defined in EBNF
[6] (right-hand side of Figure reffigure:Communication) within the interface and
specifies all message transmissions that are allowed between a client and a server
of that interface. A message transmission is therein prefixed by IN, if it is sent
from the client to the server, and OUT, if sent in the opposite direction. A sequence
of messages is denoted by subsequent expressions, while curly brackets represent
arbitrary repetition (including zero times) of a sub-protocol.

As for the implementation of the components, the server component auto-
matically starts a separate service process for each client, running inside the
server component and performing the server-side communication with the cor-
responding client. For a more detailed explanation, the reader is referred to [2].
Since the interactions between different components are inherently synchronised
by the communication, only the processes within the same component instance
need to be explicitly synchronised by monitor protection. The compiler excludes
uncontrolled concurrent accesses (race conditions) inside a component.

3 Runtime System

In order to enable efficient execution of the component-oriented programs, the
language is implemented by a runtime system that directly runs with its own
kernel on normal PCs (IA32) and has the following features:

– Fine-granular stacks. Processes are extremely light-weighted, with stacks
that can have arbitrarily small size. In general, stack sizes do not need to grow
and shrink at runtime, because the programming model uses communication
instead of method calls.

– Software-controlled preemption. Preemptive execution of processes is realised
by instrumented code that is automatically inserted by the compiler at re-
quired points. No unnecessary register backups have to be taken for preemp-
tion.

– No garbage collection. The system ensures memory safety without the need
for automatic garbage collection. This is because the time for the memory
deallocations is exactly defined by the hierarchical compositions.

We have measured the maximum support number of processes (threads) using
a computer machine with 4GB main memory, see Figure 4. Our system (Compo-
nent OS) indeed permits millions of processes, whereas the other systems limit
the number of processes to a small amount.

We also assembled a set of concurrent programs, to determine the runtime
performance. The programs are written in our component language and analog-
ously in classical object-oriented languages, using threads in place of the intrinsic
component processes. To stick to the right paradigm, we implemented the object-
oriented programs by using methods for object interactions. As can be seen
in Figure 4, the new system outperforms the C#, Java and AOS [5] with a
median speedup of factor 2.7, if we compare the result of each test case with
the corresponding best other system. Only for some simple programs is our
implementation slower (the dynamic collections are more expensive than explicit
arrays). All test programs are available at [3].

4 Conclusion

The presented component language provides a new programming model which
enables dynamic structuring with expressive and hierarchical relations instead

Component OS Windows C# Windows Java AOS
5,010,000 1,890 9,999 15,700

test program
(in seconds)

Component
OS

C# Java AOS speedup2

City 0.26 0.66 440 4.1 2.5
ProducerConsumer 18 19 130 60 1.1
Eratosthenes 1.6 6.8 4.6 5.8 2.9
News 0.82 3.5 3.9 3.7 4.6
Library 0.78 0.74 1.5 0.59 0.76
TokenRing 2.1 22 22 18 8.6
Mandelbrot 0.89 0.43 0.39 0.6 0.44
TrafficSimulation 0.05 33 - 1 - 1 660

Intel Xeon, 6 CPU with 700MHz, 4GB memory, C# and Java ran on Windows Server
2003 Enterprise Edition; 1 not implemented; 2 speedup of Component OS compared to
the fastest other system

Runtime in seconds

Maximum number of processes (threads)

Fig. 4. Experimental measurements

of pointers. At the same time, the language institutionalises first-class support
of well-controlled concurrency by self-active components that solely interact by
message communication. The language is also efficiently supported by our cus-
tomised runtime system, clearly surpassing existing systems in the number of
processes and the performance of concurrency.

Acknowledgments

I gratefully appreciate the helpful support and constructive advice from my
supervisor Prof. Dr. Jürg Gutknecht. I also express my thanks to Dr. Felix
Friedrich, who proofread this paper and also gave valuable feedback.

References

1. J. Aldrich, C. Chambers, D. Notkin. ArchJava: Connecting Software Architecture
to Implementation, Intl. Conference on Software Engineering (ICSE), May 2002.

2. L. Bläser. A Component Language for Structured Parallel Programming, Joint
Modular Language Conference (JMLC), Sept. 2006, LNCS Vol. 4228, Springer
Verlag, 2006.

3. The Component Language and System, http://www.jg.inf.ethz.ch/components.
4. N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for

Software Architecture Description Languages, Software Engineering, 26(1):70-93,
2000.

5. P. J. Muller. The Active Object System Design and Multiprocessor Implementation.
PhD Thesis, Diss. ETH No. 14755, ETH Zurich, 2002.

6. N. Wirth. What Can We Do About the Unnecessary Diversity of Notation for
Syntactic Definitions?, Communications of the ACM, 20(11):822-823, Nov. 1977.

