
A High-Performance Operating System for
Structured Concurrent Programs

Luc Bläser
Computer Systems Institute, ETH Zurich, Switzerland

blaeser@inf.ethz.ch

ABSTRACT
With the advent of multi-processor machines, the time has
definitively come to use new programming models that offer
an improved support of concurrency. While various interest-
ing new models have been recently presented for concurrent
and structured programming, no appropriate runtime sys-
tems currently exists. Therefore, we have developed our own
new operating system which has been particularly optimized
for high-performance execution of such programs.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.4.1 [Operating Systems]: Process Man-
agement—concurrency, scheduling, synchronization [concur-
rent programming structures]

General Terms
Performance, Languages

Keywords
concurrency, memory management, hierarchical composition,
message communication

1. MOTIVATION
While current operating systems have been particularly

optimized for the execution of classical sequential programs,
they typically fail in providing efficient runtime support for
modern concurrent programming languages. More specif-
ically, in recent years, new languages have been proposed
which use a substantially different programming model and
thus present new requirements on a runtime system:

1. Concurrency. Modern and advanced programming lan-
guages [3, 12, 10, 7, 17, 11, 6] usually offer concurrency
as a primary programming concept, which is directly
associated with objects or components. Instead of pri-
marily programming with procedures, such languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLOS ’07,October 18, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-922-7/07/0010 ...$5.00.

rather encourage using a large number of very fine-
grained processes which can directly interact by means
of message communication.

2. Structuring. While traditional programming languages
allow arbitrary referencing of objects (with some type
limitations) without ability of guaranteed encapsula-
tion, new programming languages increasingly focus
on more expressive program relations and general hi-
erarchical encapsulation [3, 14, 8, 1]. One approach is
introducing structured components to replace classical
references by more expressive program relations, such
as hierarchical composition and dual interface wiring.

An example of a programming language which supports
the abovementioned features in an uncompromising way is
our recently presented Component Language [3]. However,
for such programming languages, no efficient operating sys-
tem currently exists. On the one hand, this is because to-
day’s operating systems only offer concurrency with limited
scalability in the number of processes and poor efficiency for
short-running and frequently synchronized processes. On
the other hand, modern runtime systems often prescribe a
specific memory management model with institutionalized
garbage collection [9], even if the new language permits more
efficient and accurate memory management.

For this purpose, we have developed a new small operat-
ing system which enables the high-performance execution of
concurrent and structured programs. The highlights of the
new system are:

1. The system supports millions of parallel processes on
conventional computer machines.

2. The execution speed of concurrent programs is faster
by a factor of 3 than in conventional systems.

3. The system offers a high predictability of the runtimes
for our programs.

The system is primarily designed to support our Compo-
nent Language very efficiently. However, it is deliberately
kept generic and extendible to also support other concur-
rent languages with similar requirements. In this paper, we
present the new operating system and explain its design and
implementation. By means of experimental measurements,
the scalability and performance of the system is compared
to existing systems.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a short overview of what programming model

COMPONENT BoundedBuffer OFFERS DataAcceptor, DataSource; (* implementation *) END BoundedBuffer; COMPONENT Producer REQUIRES DataAcceptor; END Producer; COMPONENT Consumer REQUIRES DataSource; END Consumer; static templates BoundedBuffer runtime instances Data- Acceptor Data- Source Producer Data- Acceptor Consumer Data- Source
Figure 1: Component templates and instances

is supported by the system. Section 3 then describes the
design and implementation of the operating system. In Sec-
tion 4, we present the results of the experimental measure-
ments with our system, by comparing it to existing solutions.
Section 5 finally reports on related work, before we draw a
conclusion in Section 6.

2. PROGRAMMING MODEL
Our operating system already supports programs written

in our concurrent and structured language. Instead of fea-
turing classical objects or modules, this language is entirely
based on a concept of components. A component consti-
tutes a closed program unit at runtime which encapsulates
state (data values and sub-components) and behavior (inter-
actions and functionality). Strict encapsulation is enforced,
i.e. a component can only be accessed from outside via ex-
plicitly defined interfaces. A component may both offer and
require interfaces. An offered interface thereby represents an
external facet of the component itself, enabling interactions
between the component and its outer environment. Con-
versely, a required interface specifies an interface that is to
be offered by another external component. A component is
statically defined in the program code by a template, which
allows creating multiple instances of components at runtime
(see Figure 1).

2.1 Hierarchical Composition
A component is able to contain an arbitrary number of

components within its implementation scope. This is en-
abled by means of variables, which represent separate con-
tainers in which components can be stored. A variable can
either store a single component (e.g. buffer in Figure 2) or
denotes a collection (e.g. producer[i: INTEGER] in Figure
2), in which a dynamic number of components can be allo-
cated. In the first case, the component is directly identified
by the variable name, whereas in the latter case, a compo-
nent in the collection is identified by the variable name and
an index value. For each variable, a type is associated which
describes either the template of the component or (for the
sake of polymorphism), only postulates a set of offered and
required interfaces (see [3]).

At runtime, components can be created and installed within
the variables by use of the NEW-statement. As a result, the
components inside the variables are fully encapsulated and
constitute sub-components of the surrounding instance. No
explicit pointers or references are involved here, as a compo-
nent is only accessible via its variable identifier (and index
value). Of course, the components need to be appropri-

COMPONENT Simulation; VARIABLE buffer: BoundedBuffer; producer[i: INTEGER]: Producer; consumer[i: INTEGER]: Consumer; i, n, m: INTEGER; BEGIN (* read n and m from user *) NEW(buffer); FOR i := 1 TO n DO NEW(producer[i]); CONNECT(DataAcceptor(producer[i]), buffer) END; FOR i := 1 TO m DO NEW(consumer[i]); CONNECT(DataSource(consumer[i], buffer) END END Simulation; Simulation BoundedBuffer Producer Data- Acceptor Producer buffer producer[1] producer[n] ... Consumer Consumer consumer[1] consumer[m] ... Data- Source
Figure 2: Hierarchical composition

ately organized in the memory by using memory indirec-
tions. This however happens automatically in the runtime
system and is not visible at the level of the programming
language.

Components within the same scope may be also connected
to networks. For this purpose, each required interface of a
component can be connected to an interface that is offered
by another component. In order to be connectable, the re-
quired and offered interfaces must have the same name (see
Figure 2).

2.2 Concurrency and Communication
In our programming language, every component runs its

own inner processes and only interacts by message communi-
cation. Two components, which are connected, can directly
exchange messages via their connected interfaces. The com-
ponent which offers the interface may be regarded as the
server, while the other component acts as the client with
regard to this interface. A message transmission involves
one side sending the message and the other one explicitly
receiving it. As a particular feature, the server component
maintains a separate communication for each client individ-
ually. This means that each pair of a client and server has a
separate communication channel via the interface, such that
the server may communicate with multiple clients in parallel
(see Figure 3).

However, two components cannot send and receive mes-
sages in an arbitrary way but must follow a communication
protocol. This protocol is defined in EBNF [18] (right-hand
side of Figure 3) within the interface and specifies all mes-
sage transmissions that are allowed between a client and a
server of that interface. A message transmission is therein
prefixed by IN, if it is sent from the client to the server,
and OUT, if sent in the opposite direction. A sequence of
messages is denoted by subsequent expressions, while curly
braces represent arbitrary repetition (including zero times)
of a sub-protocol.

As for the implementation of the components, the server
component automatically starts a separate service process
for each client. This service process runs inside the server
component and only performs the server-side communica-
tion with the corresponding client. As the interactions be-

INTERFACE DataAcceptor; { IN Element(x: INTEGER) } IN Finish END DataAcceptor; BoundedBuffer Producer Producer server client communication
Figure 3: Message communication

tween different components are inherently synchronized by
the communication, only the processes within the same com-
ponent instance need to be explicitly synchronized by mon-
itor protection. For a more detailed explanation, the reader
is however referred to [3].

3. RUNTIME SYSTEM
Our system allows direct loading and execution of the ma-

chine code that has been generated by the compiler of our
component language. For a coherent design, the system rep-
resents itself as a component, which already preexists as a
first component instance when the system is started. The
system component runs together with application compo-
nents and offers necessary system interfaces, such as for sys-
tem services or device drivers. The system component itself
has not been implemented in the Component Language but
in a reduced version of Oberon [19] (with explicit memory
management). This is because we need a more machine-
close programming language, in which the concepts directly
correspond to the underlying machine model. The possi-
bility of implementing terminal components in a different
language is a particular feature of our component model,
where interfaces and implementation are clearly separated.
In the following sections, we describe the most important
features of the operating system.

3.1 Memory Management
The system is based on a uniform memory model, where

all program structures, such as for components, processes,
stacks, collections, communications, are managed in the heap.
Stacks are maintained in the heap because we need to imple-
ment processes with very small stacks that may dynamically
grow or shrink. The memory block of a component contains
a slot for each offered and required interface. This is used to
store the necessary connection that can either refer to an-
other interface slot or to the program code of a service pro-
cess, if it forms an implemented offered interface. Process
blocks only need very small memory space for context switch
backup. In the case of a service process, the heap block also
includes the space for the communication buffer (a circular
FIFO-list) that is used between the service process and its
individual client. By analyzing the largest message decla-
ration in the communication protocol, the maximum size of
the message entry in buffer can be statically determined.
Therefore, it is possible to pre-allocate a buffer with a de-
fined buffer capacity, where the buffer capacity may vary for
each communication. During a communication, the EBNF-
protocol is also automatically monitored by the system. For
this purpose, the compiler generates for each interface spec-
ification a finite state machine, which encodes the feasible
message transmissions during a communication.

For each process, the compiler statically determines an ini-
tial stack size which is inlined in the process block. Thereby,
the size is chosen with a small reserve (up to 512 bytes),

to support the most frequent system calls on the initial
stack. More complex system calls, as well as interrupts,
are executed on an extra processor-associated kernel stack.
The stack may be also dynamically extended or reduced for
the execution of component-internal procedures. At the en-
trance of a procedure, a small compiler-inserted check de-
termines whether a new stack block has to be allocated. On
stack extension, the local data of the current procedure acti-
vation frame remains accessible on the old stack, as the caller
always keeps sufficient stack reserve for the local variables of
its directly invoked procedures. However, as the program-
ming model uses communication instead of method calls,
procedure calls and dynamic stack extensions are rather sel-
dom. A component may only feature procedures within its
implementation scope that cannot be called from outside.

As for the implementation of the language-inbuilt dynamic
collections, they are generally implemented as B+-trees.
While not occupying more than double the effectively needed
memory, B+-trees offer access times that are asymptotically
logarithmic to the number of contained elements. The sys-
tem integrates particular optimizations for collections with
integer indexes. At runtime, it is determined whether a
simple array or direct hash structure is faster and the data
structure is adapted correspondingly at runtime.

Thanks to the concept of hierarchical composition, all
memory structures have an exact deallocation time. The
deletion of a component leads to the finalization and deal-
location of all inner components and collections. A service
process can only be deleted when its client process has fin-
ished the communication. Moreover, the explicit deletion
of a single component involves disconnecting its interfaces.
Hence, the system does not require an automatic garbage
collector to guarantee memory safety.

3.2 Process Management
To offer efficient and fair scheduling of processes, all run-

nable (including preempted) processes are queued in a sin-
gle FIFO list (ready queue) and assigned to processors by
a simple but efficient round-robin scheduler. As processes
can directly operate on their enclosing component, the com-
ponents are implemented as monitor-protected shared re-
sources, implemented with three local waiting queues, one
for processes waiting for exclusive lock, one for those waiting
on shared locks and one for all processes that are waiting on
a Boolean condition. The prioritisation among processes fol-
lows a three-stage shell model. In order of priority, processes
with a fulfilled await-condition gain access to the resource,
then processes waiting for the entrance with an exclusive
lock, and finally those waiting for a shared lock. This is
implemented by checking the waiting queue, when a process
should release the exclusive monitor lock. If the condition
is fulfilled for a waiting process, the corresponding process
directly obtains the corresponding lock.

Synchronous context switches involve very low costs, as
only three registers (program counter, stack pointer and
frame pointer) have to be saved and restored. In our sys-
tem, preemptive scheduling of processes is not implemented
by conventional hardware interrupts but with a technique
of code instrumentation. The compiler automatically in-
serts checks in the machine code, initiating preemption of
a process if a certain execution time has passed. Notably,
the system guarantees time-sliced processor sharing without
any help or knowledge of the programmer, i.e. no coop-

main memory Component OS Windows C# Windows Java AOS
256 MB 321,000 1,950 7,230 15,700
1024 MB 1,300,000 1,960 7,130 15,700
4096 MB 5,010,000 1,900 10,000 15,700

Table 1: Maximum number of processes

erative multi-task has to be programmed. With this tech-
nique, the system only saves the necessary program state
before a software-based preemption, while interrupt-based
preemption needs to take a snapshot of all registers. In
fact, the checks are mostly inserted between language state-
ments, where typically no temporary registers are in use.
Therefore, processes do not need to have large pre-allocated
memory space for register backups. To guarantee that the
limits of a time slice are fulfilled, the preemption checks need
to be continuously executed in small time steps. Therefore,
the checks are inserted (1) in each loop body, (2) in each
procedure entry, and (3) after a statement sequence of a
maximum (worst-case) runtime. The current implementa-
tion of a check only requires a few simple instructions and
we measured that the total cost of preemption checks is on
average less than 0.5% of the total program runtime.

It is well known that process synchronization is quite ex-
pensive on today’s computer machines due to the required
synchronization of the processor caches. In fact, one can
only gain from parallelism if the system uses long-running
nearly independent processes, which need no or very oc-
casional mutual synchronization. However, our program-
ming language encourages a model of fine-granular interact-
ing processes. Therefore, we equipped our system with a
smart scheduler that only schedules processes in parallel, if
they indeed run faster on multiple processors. All other pro-
cesses are scheduled in a serial but time-sliced way on the
same processor. To determine the appropriate scheduling
strategy, the system measures the synchronization rate for
each process. More specifically, a process mostly runs inde-
pendently of other ones, if it has been recently preempted
and has not been recently waiting on a monitor lock or con-
dition. Such a process is then elected to run in parallel with
other processes.

4. EXPERIMENTAL RESULTS
Our operating system was primarily designed to support

a particularly high number of processes that is clearly be-
yond the capabilities of existing systems. Therefore, we have
measured the maximum support number of processes on our
system and on other systems. For this purpose, we have used
a concurrent program that scales well with the number of
parallel processes. We have once implemented the programs
in our language and then, in object-oriented languages by
using threads. Table 1 summarizes the maximum number of
processes for different sizes of main memory size. As can be
seen, our system (Component OS) indeed permits millions
of processes, where the number of processes scales linearly
with the available size of physical main memory. The eval-
uation also shows that the other systems only allow a very
small number of processes, which is not more than about
16,000 (such as in AOS [15]). This deficiency can be traced
back to the heavy-weighted stack design in those systems,
as well as in their high memory demands for preemption
backups.

test program Component
OS

C# Java AOS speedup2

City 0.26 0.66 440 4.1 2.5
ProducerConsumer 18 19 130 60 1.1
Eratosthenes 1.6 6.8 4.6 5.8 2.9
News 0.82 3.5 3.9 3.7 4.3
Library 0.78 0.74 1.5 0.59 0.76
TokenRing 2.1 22 22 18 8.6
Mandelbrot 0.89 0.43 0.39 0.6 0.44
TrafficSimulation 3 2000 - 1 - 1 -
runtimes in seconds rounded on 2 figures, Intel Xeon, 6 CPU with 700MHz,
4GB main memory, C# and Java ran on Windows Server RC2 Enterprise Edition
1 not implemented; 2 Component OS compared to the fastest other system

Table 2: Performance comparison

To measure the runtime performance, we assembled a
set of concurrent programs, ranging from very simple pro-
grams (ProducerConsumer) to extensive simulation pack-
ages (TrafficSimulation). Again, we implemented programs
in our component language and in classical object-oriented
languages. Naturally, the versions for the different languages
are modeled as similarly as possible, using threads in place
of the intrinsic component processes. To stick to the right
paradigm, we implemented the object-oriented programs by
using classical methods for object interactions. Therefore,
the test programs of our language have a higher number of
threads as each communication involves an additional ser-
vice process. All measurements were performed on a ma-
chine with 6 Intel Xeon processors with 700MHz each. As
depicted in Table 2, the new system outperforms C#, Java
and AOS [15] with an average speedup of factor 3, if we
compare the result of each test case with the correspond-
ing best other system. Naturally, the performance advan-
tage of our system is mainly due to the underlying concur-
rency model, which offers low-cost context switches and fast
software-controlled preemption. Only for some simple pro-
grams with a lot of array accesses is our implementation of
dynamic collections slower. Naturally, our operating sys-
tem is also capable of offering linear speedup with multiple
processors. For instance, the Mandelbrot program has a
runtime of 5.1 seconds with one processor and 0.89 seconds
with six processors on the same machine. All test programs
are available at [4].

Without a garbage collector, our runtime system also pro-
hibits unexpected system disruptions. To illustrate the dif-
ference, we have performed a measurement series of 500 sub-
sequent executions of a small instance of the TokenRing pro-
gram (Figure 4). While AOS [15] suffers from continuous
peaks as a result of the garbage collector disruptions, our
runtime system exhibits a nearly constant execution time
among all iterations. The only time fluctuations that oc-
cur in the component system are due to the non-predicable
process synchronization and caching effects.

5. RELATED WORK
As for our programming model, related work has already

been discussed in [3]. Therefore, we focus here on the op-
erating system. The design of the kernel of our system is
influenced by AOS [15], although the memory and process
management is substantially different. The idea of repre-
senting a stack as a dynamic list of memory blocks is already
known from existing systems [16, 13]. In some of these sys-
tems, the stack size can however not be arbitrarily small

10

15

20

25

30

35

40

45

50

55

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491

iterations

m
s AOS

Component OS Small TokenRing program, 500 runs, 1 CPU Intel Mobile 2.4GHz, 256 MB main memory
Figure 4: Variations in the runtimes

but has to be at least of a page (4KB) [13]. In our language
and system, the stack sizes of a process can be adequately
determined by the compiler, such that dynamic stack ex-
tensions only occur for relatively seldom system calls. Sim-
ilar to our runtime system, the Singularity OS [13] incor-
porates a communication-oriented programming model [7].
The kernel, drivers and applications are designed as sepa-
rate object spaces that have to be isolated and can only
interact by message exchange or via shared objects in a spe-
cial exchange heap. In our approach, all normal application
components ought to be programmed in a structured pro-
gramming model that is similar to ours, such that encapsula-
tion can be inherently guaranteed. To reduce the disruption
times of garbage collection, rather complicated and expen-
sive real-time collectors [5, 2] exist. The Singularity OS [13]
thereby takes a particularly interesting approach. As a re-
sult of the concept of isolated object-spaces, each space can
be managed by its individual runtime systems. Therefore,
garbage collection becomes customizable at the granularity
of the object spaces.

6. CONCLUSION
This paper has presented a new operating system which

enables highly scalable and efficient execution of concurrent
and structured programs, clearly surpassing conventional
runtime systems. With a rigorous liberation from a clas-
sical system design, we have developed a system that em-
ploys innovative techniques, such as fine-granular process,
low-cost context switches as well as a memory model that
can be safely managed without use of a garbage collector.
The source code and the binaries of the operating system,
as well as the language report and the test programs, are
available at [4].

Acknowledgments
I would like to thank Prof. Dr. Jürg Gutknecht for his
support and supervision in this project. My thanks also
go to Dr. Felix Friedrich, Dr. Svend Knudsen, and other
colleagues who commented on this language and system.

7. REFERENCES
[1] J. Aldrich, C. Chambers, D. Notkin. ArchJava.

Connecting Software Architecture to Implementation.

Intl. Conference on Software Engineering (ICSE), May
2002.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A Real-Time
Garbage Collector with Low Overhead and Consistent
Utilization. Symp. on Principles of Programming
Languages (POPL), Jan. 2003.

[3] L. Bläser. A Component Language for Structured
Parallel Programming. Joint Modular Language
Conference (JMLC), Sept. 2006, LNCS Vol. 4228,
Springer Verlag, 2006.

[4] L. Bläser. The Component Language and System.
http://www.jg.inf.ethz.ch/components.

[5] P. Cheng and G. E. Blelloch. A Parallel, Real-Time
Garbage Collector. Conf. on Programming Language
Design and Implementation (PLDI), June 2001.

[6] O. - J. Dahl and K. Nygaard. SIMULA — An
ALOGL-based Simulation Language. Communications
of the ACM, 9(9):671-678, 1966.

[7] M. Fähndrich, M. Aiken, C. Hawblitzel, et al.
Language Support for Fast and Reliable
Message-Based Communication in Singularity OS.
EuroSys 2006, April 2006.

[8] D. Gay, P. Levis, R. von Behren, et al. The nesC
Language: A Holistic Approach to Networked
Embedded Systems. Conf. on Programming Language
Design and Implementation (PLDI), June 2003.

[9] J. Gough. Compiling for the .NET Common Language
Runtime (CLR). Prentice Hall, 2002.

[10] R. Güntensperger and J. Gutknecht. Active C#. Intl.
Workshop on .NET Technologies, May 2004.

[11] J. Gutknecht. Do the Fish Really Need Remote
Control? A Proposal for Self-Active Objects in
Oberon. Joint Modular Language Conference (JMLC),
March 1997. LNCS Vol. 1204, Springer Verlag, 1997.

[12] J. Gutknecht and E. Zueff. Zonnon Language Report.
http://www.zonnon.ethz.ch.

[13] G. Hunt, J. Larus, M. Abadi et al. An Overview of the
Singularity Project. Technical Report
MSR-TR-2005-135, Microsoft Research, Oct. 2005.

[14] Y. D. Liu and S. F. Smith. Interaction-Based
Programming with Classages. Intl. Conf. on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), Oct. 2005.

[15] P. J. Muller. The Active Object System Ű Design and
Multiprocessor Implementation. PhD Thesis, Diss.
ETH No. 14755, ETH Zurich, 2002.

[16] R. von Behren, J. Condit, F. Zhou, et al. Capriccio:
Scalable Threads for Internet Services. Symp. on Arch.
Support for Programming Languages and Operating
System Principles (SOSP), Oct. 2003.

[17] P. H. Welch. The JCSP Home Page.
http://www.cs.ukc.ac.uk/projects/ofa/jcsp.

[18] N. Wirth. What Can We Do About the Unnecessary
Diversity of Notation for Syntactic Definitions?
Communications of the ACM, 20(11):822-823, Nov.
1977.

[19] N. Wirth. The Programming Language Oberon.
Software – Practice and Experience, 18(7):671-690,
July 1988.

