
How Can We Liberate Ourselves From Pointers?

Luc Bläser

Computer Systems Institute, ETH Zurich, Switzerland

blaeser@inf.ethz.ch

Abstract
Pointers or references can be identified as the root cause
of many fundamental problems in current programming
languages, typically resulting in unspecified object depen-
dencies and missing hierarchical encapsulation. We there-
fore propose to abandon references from the language and
to use expressive program relations instead. For this pur-
pose, we have developed a programming language which is
only based on hierarchical composition and interface con-
nections.

Categories and Subject DescriptorsD.3.3 [Programming
Languages]: Language Constructs and Features—classes
and objects

General Terms Languages

Keywords Components, Interfaces, Hierarchical composi-
tion

1. Motivation
Todays popular programming languages all suffer from a
severe problem. They require the usage of explicit references
or pointers, as soon as program structures become dynamic.
However, the semantic expressiveness of references is much
too low-level, as they allow arbitrary interlinking of object
instances, without the resulting object graph having a clearly
specified shape. On a daily basis, programmers encounter
the various negative consequences of this deficiency:

• Unspecified dependencies. As references can be unre-
strictedly copied between object instances, invalid refer-
ences and unspecified object dependencies may be easily
introduced in a program. It is usually not defined, from
which location in other objects an object may be refer-
enced.

Copyright is held by the author/owner(s).

OOPSLA’07, October 21–25, 2007, Montréal, Qúebec, Canada.
ACM 978-1-59593-786-5/07/0010.

• Missing hierarchy. An object is not capable of containing
a dynamic structure of other objects as an encapsulated
unit. The objects that ought to be encapsulated can still
be intentionally or accidentally referenced from other
instances, such that the program has only a flat object
structure.

To eliminate the pointer problems in a more direct way,
we have developed a programming language [2], in which
references and pointers have been entirely replaced by more
expressive structures. More specifically, the language incor-
porates a more general notion of objects (called compo-
nents), which are based on two structural relations:

1. Hierarchical composition. A component is able to con-
tain a dynamic number of components that are fully en-
capsulated by the surrounding instance.

2. Interface connections. With a dual concept of offered
and required interfaces, arbitrary networks of compo-
nents can be built by connecting the interfaces. The net-
work shape is thereby always controlled by the hierarchi-
cally outer component.

Our language is different to architecture description lan-
guages [5], as it allows constructing dynamic component
structures at runtime and is not limited to static component
assemblies. Other component-oriented programming mod-
els [4, 1] still require ordinary references for modeling dy-
namic program structures.

2. Programming Language
In our component language [2], a program is defined as a
component, which can be again composed of other com-
ponents. Acomponentconstitutes a closed program unit
at runtime which encapsulates state (data values and sub-
components) and behavior (interactions and functionality).
Strict encapsulation is enforced, i.e. a component can only
be accessed from outside via explicitly definedinterfaces. A
component may bothofferandrequireinterfaces. An offered
interface thereby represents an external facet of the compo-
nent itself, enabling interactions between the component and
its outer environment. Conversely, a required interface spec-
ifies an interface that is to be offered by another external
component. A component is statically defined in the program



Figure 1. A component

code by atemplate(left hand side of Figure 1), which allows
creating multiple instances of components at runtime (right
hand side of Figure 1).

2.1 Hierarchical Composition

A component is able to contain an arbitrary number of com-
ponents within its implementation scope. This is enabled by
means ofvariables, which represent separate containers in
which components can be stored. A variable can either store
a single component (e.g.garage in Figure 2) or denotes a
collection (e.g.room[i: INTEGER]), in which a dynamic
number of components can be allocated. In the first case,
the component is directly identified by the variable name,
whereas in the latter case, a component in the collection is
identified by the variable name and an index value.

At runtime, components can be created and installed
within the variables. As a result, the components inside
the variables are fully encapsulated and constitute sub-
components of the surrounding instance. No explicit point-
ers or references are involved here, as a component is only
accessible via its variable identifier (and index value).

Components within the same scope may also be con-
nected forming networks. For this purpose, the required in-
terface of a component can be connected to an interface
that is offered by another component. In order to be con-
nectable, both interfaces must have the same name (see Fig-
ure 2). A component may also connect an offered interface
of its own to an offered interface of a sub-component (e.g.
ParkingSpace in Figure 2). Analogously, the required in-
terface of a sub-component may be connected to the required
interface of the surrounding component (e.g.Electricity
in Figure 2).

With these relations, the language permits general pro-
gram structures. In fact, any hierarchy of component net-
works can be described, as each component may contain a
set of sub-components with arbitrary interface connections.

With the hierarchical composition, components have an
exactly defined deallocation time. The deletion of a com-
ponent directly leads to the deletion of its sub-components.
Moreover, a single component may be explicitly deleted by
the programmer. In this case, the component’s interfaces are
automatically disconnected.

3. Conclusion
In order to eliminate the structural weaknesses of current
programming languages, we have designed a component-
based language which completely abandons references or
pointers. Instead, the language offers more expressive pro-
gram relations, which enable hierarchical compositions with

Figure 2. Hierarchical composition

guaranteed encapsulation and component networks with an
accurate control of the shape and the dependencies. The lan-
guage has been implemented and successfully applied to
standard programming problems and demonstrated in a prac-
tical programming project, namely a traffic simulation pack-
age [3].

Acknowledgments
I would like to thank Prof. Dr. J̈urg Gutknecht for his sup-
port and advise in this project. I also gratefully appreciate
the help of Dr. Felix Friedrich and Nadja Beeli for the proof-
reading.

References
[1] J. Aldrich, C. Chambers, D. Notkin.ArchJava. Connecting

Software Architecture to Implementation. Intl. Conference on
Software Engineering (ICSE), May 2002.

[2] L. Bl äser.A Component Language for Structured Parallel
Programming. Joint Modular Language Conference (JMLC),
September 2006, LNCS Vol. 4228, Springer Verlag, 2006.

[3] L. Bl äser.The Component Language and System.
http://www.jg.inf.ethz.ch/components.

[4] Microsoft COM. http://www.microsoft.com/com.

[5] N. Medvidovic and R. N. Taylor.A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
26(1):70-93, 2000.


