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ABSTRACT

We have developed a practical static checker that is designed to in-

teractively mark data races and deadlocks in program source code

at development time. As this use case requires a checker to be both

fast and precise, we engaged a simple technique of randomized

bounded concrete concurrent interpretation that is experimentally

effective for this purpose. Implemented as a tool for C# in Visual

Studio, the checker covers the broad spectrum of concurrent lan-

guage concepts, including task and data parallelism, asynchronous

programming, UI dispatching, the various synchronization primi-

tives, monitor, atomic and volatile accesses, and finalizers. Its ap-

plication to popular open-source C# projects revealed several real

issues with only a few false positives.
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1 INTRODUCTION

Concurrency errors, such as data races, deadlocks, and others, are

a common plague in programs developed in C#, Java, C++, Python,

and other multi-threaded programming languages. The increasing

popularity of models with implicit multi-threading, notably asyn-

chronous and task-based programming, makes the matter even

more acute. Because of the non-deterministic occurrence, software

developers commonly fear concurrency errors with good reason:

These bugs are inherently difficult to detect and reproduce, such

that they often remain undetected for a long time or even forever

in productive code. Program analysis could help in this regard, but

the availability of appropriate tools is scarce: Many of the industri-

ally prevalent tools [15, 23] focus on specific bug patterns and do

not detect data races or deadlocks in general. Only a few dynamic

concurrency checkers [17, 34, 38] are available and working for
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current language versions. Static concurrency analysis continues

to be an area of research where very few practical tools [26, 36] are

on hand. For newer C# versions, there even exists no static checker

for data races or deadlocks at all. Previous tools such as CHESS [24]

have been discontinued. The situation is discussed in more detail

in Section 6.

In this work, we aim to provide a practical tool that detects com-

mon concurrency errors in a slightly different setting than other

work in this area. This tool should interactively support software

developers when working in an integrated development environ-

ment (IDE): It should directly highlight problematic program sec-

tions with regard to concurrency during the coding. For this pur-

pose, the following checker properties were considered essential:

• Static: The source code as displayed in the IDE needs to

be analyzed. The code being written can be incomplete or

contain erroneous fragments, making a program execution

and thus a dynamic analysis impossible.

• Fast: Short analysis times are desired to provide quick er-

ror feedbacks to the programmers when editing or viewing

source code. Ideally, the analysis should only take a few sec-

onds or less, even for large projects.

• Precise: Reported warnings should indicate most likely real

concurrency errors and infrequent false positives. In the case

of many false positives, software developers may quickly ig-

nore the messages and turn off the tool.

Apparently, these requirements imply a decisive compromise: It is

impossible to create a static checker that is sound (detects all is-

sues, no false negatives) and precise (detects only real issues, no

false positives) at the same time, since this problem is undecidable

(similar to the halting problem). This means that when regarding

the postulated properties, we must trade soundness against preci-

sion. In other words, we deliberately accept a checker that may

miss certain errors, i.e. has false negatives, with the purpose that

programmers receive as many real errors as possible. Another goal

of this checker is to report concurrency errors in a limited short

amount of time.

Given this setting, we designed a practical static checker, called

HSR Parallel Checker, for the detection of data races and deadlocks

in an IDE. Our experiments with an extensive code base of mil-

lion lines of code of popular open-source projects shows that the

tool performs effectively in terms of precision and speed. The tech-

nique is deliberately simple and inspired by dynamic analysis, al-

though it is integrated in a static checker. Briefly summarized, we

perform a mostly concrete interpretation of the program by simu-

lating randomized thread scheduling. Only for the cases where ex-

act program states are not known, e.g. for external inputs, abstract

states are engaged. The interpretation involves multiple runs and
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is bound in interpretation steps and memory, in order to remain re-

sponsive in the IDE, regardless of the project size. Seeded pseudo-

randomization guarantees reproducibility of the analysis.

The analysis has been implemented as a checker tool that oper-

ates on the C# 7 programming language and can be plugged in the

Visual Studio IDE. Based on the .NET Compiler Platform (project

Roslyn), the checker performs interactive analysis and error high-

lighting in the code within the IDE. While this serves as proof of

concept and as a practical tool at the same time, the technique

could just as well be applied to other programming languages.

The checker uses well-known verification techniques, although

with differences: Our checker appliesmechanisms of dynamic check-

ers, such as ThreadSanitizer [34] or ConTest [7], however, it re-

mains static, i.e. does not run the program and can deal with un-

known program states. We do not aim for a complete (sound) anal-

ysis in contrast to model checking, abstract interpretation [5], or

concrete interpretation, such as Java Pathfinder [26] or CHESS [24].

Although various counter-measures to the state explosion problem

exist, the huge exploration spaces inherent to these approaches are

often impractical for the analysis of large projects, especially if the

analysis should only take a few seconds. Similar to symbolic exe-

cution [1], the presented checker simulates the execution by main-

taining as many concrete states as possible and by using symbolic

values for unknown external inputs. However, for speed reasons,

we do not compute symbol conditions or path constraints, and also

omit model checking. A detailed discussion is provided in Section

6.

In summary, we make the following contributions in this paper:

• The description of a heuristic checker method that is practi-

cally suited for the interactive static detection of data races

and deadlocks in an IDE, a use case where very short anal-

ysis times and precision are considered essential.

• The report on the design, implementation, and experimen-

tal evaluation of this method in the form of a full-fledged

checker tool for C#.

• The discussion of several concurrency errors found in pop-

ular C# open-source projects with this tool.

The remainder of this paper is structured as follows: Section

2 defines the detected concurrency errors. Section 3 presents the

checker algorithm in general. Section 4 describes its implementa-

tion for C#. Section 5 reports on the experimental evaluation of this

checker. Section 6 discusses related work. Section 7 finally draws

a conclusion.

2 DETECTED ERRORS

We focus on concurrency errors that can be defined at the level

of the programming language without understanding program se-

mantics, namely data races and deadlocks.

Data races are pairs of unsynchronized concurrent accesses on
the same memory location, involving at least a write access. The
granularity of a memory location depends on the programming

language: In C# and Java, this is the same variable or the same ar-

ray element. Unsynchronized concurrent accesses mean that two

threads each effect an access, without there being a happened-before

relation [19] between the accesses. A happened-before relation is

established by mutually synchronizing instructions between the

Figure 1: Data race in a broken double-checked locking

pattern: The write on the field instance inside the lock

section can happen concurrently with the read outside

the lock. Lacking a happened-before relation and corre-

sponding memory fences, instructions in the constructor of

Singleton could be reordered after the assignment of the

created object, such that a not properly initialized object

could be returned. Adding the volatilekeyword to instance

would eliminate the data race and correct the solution.

two threads. In C# and Java, this is between the release and acqui-

sition of the same lock, the notification and waiting on the same

synchronization instance, accesses to the same volatile variable,

atomic accesses to the same memory location, on thread starts and

joins, on task starts and awaits etc. As mentioned, only read-write,

write-read, or write-write accesses are candidates for data races.

Data races are a formal error, because the programming language

does not specify the program behavior in such a case on purpose,

to give freedom for program optimizations. Data races are often

involved in race conditions, but not necessarily. For example, race

conditions can occur despite the absence of data races: Accesses

to shared resources may be all individually synchronized (e.g. a

read per se and a write per se), but the granularity of synchroniza-

tion could be too small (e.g. the read and write should be atomic

together). Our checker cannot detect race conditions that do not ef-

fect data races, as explained below. Figure 1 shows an obvious case

of a data race in a broken double-checked locking pattern, where

the volatile keyword on the field instance would correct the sam-

ple. Figure 2 depicts another more hidden situation of data races in

an erroneous parallel quicksort, accompanied by a fix. Our checker

is designed to precisely detect both data race cases. As desired, the

checker warnings disappear when the corresponding code is fixed.

Deadlocks are constellations wheremultiple threads block each
other forever in a circular lock dependency. Each involved thread

holds a lock, while awaiting a lock that is held by another thread

in this circle. At runtime, deadlocks are equivalent to a cycle in the

resource allocation graph [14]. Figure 3 outlines the deadlock in a

bank transfer sample, as detected by the checker.

Other concurrency errors, such as race conditions, livelocks, and

starvation generally require an understanding of the program se-

mantics: As for race conditions, the knowledge of the granularity

of critical sections and semantic state synchronizations would be

essential. As for livelocks and starvation, a notion of semantic pro-

gram progress despite running threads would be necessary. There-

fore, we ignore these classes of errors in the checker, and focus on

data races and deadlocks.

222



Practical Detection of Concurrency Issues at Coding Time ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Figure 2: An erroneous implementation of the parallel

quicksort, with incorrect overlapping boundaries in the re-

cursive sort calls of nested parallel tasks. The code provokes

various data races at the level of array elements as it is de-

tected by our checker. By swapping the boundaries as indi-

cated, the code is fixed and the checker no longer reports

data races.

Figure 3: A deadlock situation detected in a bank transfer

example. The Transfer-method implicitly acquires nested

locks, the first on this.sync and a second on other.sync

through the Deposit-call. The concurrent cyclic transfer

may then end up in a deadlock, as depicted in the resource

allocation graph.

3 ALGORITHM

Our checker aims to statically identify data races and deadlocks,

as defined in the previous section, in a short time and with a high

precision, but not necessarily all of them. Similar to concrete or

abstract interpretation, we thereby incorporate a dynamic checker

technique in a static analysis.

The rough idea is to map the source code to an internal repre-

sentation and then repeatedly simulate the concurrent execution

of this representation on an internal isolated runtime model, with

random scheduling and configurable bounds. Thereby, exact pro-

gram states are maintained, except for unknown external input or

incomplete program parts. Concurrency errors happening on the

internal model during the simulation are detected and reported

as issues. Although the approach is oriented toward a dynamic

checker, it is important to note that the analysis is indeed static, i.e.

the program is not really executed. The simulation only runs inside

the static checker, and does not provoke any side effects. More-

over, it can deal with unknown I/O or incomplete/incorrect pro-

gram fragments. It comes close to a concrete interpretation except

that it engages abstract (symbolic) states in a few necessary cases,

uses randomization for thread scheduling, and implies bounds on

the exploration. Seeded pseudo-randomization guarantees repro-

ducibility of the checker results. It is also similar to symbolic exe-

cution with bounded analysis, however without path constraints

and model checking due to performance reasons.

The following sections describe the algorithm in more detail.

3.1 Memory Model

We assume weak consistency as the memory model of the analyzed

code, as is the case for the C# programming language. This means

that memory accesses can be reordered as long as the serial seman-

tics from the perspective of each thread is retained, and as long as

memory fences imposed by synchronization operations are not vi-

olated. C# offers half fences with acquire- and release-semantics by

volatile variable accesses or locks/unlocks, as well as, full fences by

atomic operations or dedicated memory barrier instructions.

The checker only interprets instructions in the order of the source

code, without simulating any reordering allowed by the weak con-

sistency of the analyzed language. Therefore, the checker’s inter-

nal interpretation follows sequential consistency. As for precision,
this is a valid approach since each sequentially consistent sched-

ule also represents a valid schedule on the corresponding weak

consistent model. However, the checker may miss data races that

only occur with certain reordering due to weak consistency. In our

case, this is acceptable as we do not strive for completeness but for

precision.

3.2 Interpretation

The source code in the IDE is first transformed to an intermediate

representation. In our case, this is a self-designed virtual stack ma-

chine code, resembling the .NET intermediate language, although

extended with concurrency-specific instructions, such as start a

thread, join a thread, acquire a lock, release a lock etc. Already

compiled code could also be analyzed and mapped to this inter-

mediate representation. For each method (and constructor etc.), a
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control-flow graph (CFG) is created, wherein each node reflects an

instruction.

This intermediate representation is then interpreted in a sand-

box. This maintains a model that represents the entire simulated

state of the program as it would be in a real runtime system, al-

though without performing I/O side effects or time consuming op-

erations (no sleeps etc.). The runtime model comprises a set of

runnable threads and the object heap. Analogous to a real runtime

system, each thread carries its call stack with the method incarna-

tions, holding their local variables and instruction pointer.

Figure 4 shows the steps of the analysis algorithm.Multiple runs

are simulated. Per run, a program entry is set up on the empty run-

time model depending on the program type. Repeatedly, a random

runnable thread is selected and its active instruction according to

the CFGs simulated. It is a simple random scheduler, picking one of

the runnable threads at random in each step. The checker then in-

terprets the current instruction of the selected thread, effecting the

analogous effect on the internal runtime model like in a real run-

time system, except for later discussed abstract states. Depending

on the state and instruction, this can also block the current thread,

i.e. put the thread into a waiting queue, or wake other threads, i.e.

set them as runnable again. As described in the subsequent sec-

tions, extra information is maintained to detect issues. The step

of random thread selection and instruction interpretation is then

repeated until a per-run bound is reached. This bound is defined

by a limit on the model memory and a maximum number of sim-

ulated logical steps. The per-run bound is also reached if there is

no runnable thread, i.e. the program is finished or stuck. Once the

per-run bound is exceeded, the simulationmodel is reset and a next

run simulated. This continues until an overall simulation bound is

reached, defined by a total number of simulated steps of all runs.

Finally, the detected issues are reported, by sorting out potential

duplicate findings.

Of course, the technique of random thread scheduling and bound-

ed interpretation is heuristic and results in an incomplete analysis,

i.e. existing issues may be overseen. The rationale is to only invest

a limited amount of time, such that only a subset of schedules can

be analyzed. More sophisticated random scheduling [33] would

require analysis of runnable threads and thus extra computation

time, that is too costly for us. Interestingly, naive random sched-

uling also shows to be quite effective according to an empirical

study [37]. Therefore, we choose the approach of a simple random

scheduler. The chance of repeated, and thus unnecessary, sched-

ules could be eliminated by remembering the past schedules in a

tree but this effort is not justified as the probability exponentially

decreases with the simulated program depths.

3.3 Data Race Detection

A vector clock [19] is used in the simulation model to represent

the happened-before relations among the instructions performed

by the threads. This information serves to infer data races in the

simulation. The use of vector clocks is a well-known technique

for this purpose. We only briefly revisit the algorithm here with

certain technical details to support a more detailed understanding

of our checker design.

Figure 4: Flow chart of the checker algorithm.

Each thread in the model carries its vector time, defining its

own current logical time and the points in time when it has been

synchronized for the last time with other threads. Apart from the

thread’s current vector time, a thread also records all its performed

accesses, each with the time and target, i.e. of whether it is a vari-

able or array element. Moreover, synchronization objects, e.g. mon-

itors, semaphores, read-write locks etc., carry the vector time of

their last unlock.

Regarding the vector times, the interpreter now operates as fol-

lows: On thread starts, the started thread is synchronized with the

time of the current thread and the current thread’s time advances.

On thread joins, the current thread’s time advances and it is syn-

chronized with the time of the terminated target thread. On unlock

instructions, the current thread’s time advances and is recorded

in the synchronization object. On lock instructions, the current

thread’s time is synchronized with the recorded time of the syn-

chronization object and the current thread’s time advances. On ac-

cesses, the access is recorded together with the current time in an

access event of the accessing thread.

Finally, data races can be identified with this information: Af-

ter accessing a variable or array element, the access is compared

against all other concurrent events of other threads, i.e. events that

have no happened-before relation between each other regarding

the vector times of the events. We only consider accesses with an

exactly interpreted target, excluding accesses with "uninterpreted"

addresses (cf. Section 3.5). If two compared events access the same

exactly interpreted variable or array element, and at least onewrite

is involved, it is recorded as a data race issue. The call stacks of the

involved threads and transitive parent threads can be used to com-

pose an error trace information for the issue.
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3.4 Deadlock Detection

Deadlocks can be identified by analyzing the lock hold-and-wait

dependencies among threads and looking for a cycle therein [14].

As this is also a standard approach, we only briefly explain its re-

alization in our checker: Synchronization objects in our checker

model carry the information about their lock owner (or multiple

owners in the case of reader-writer locks), as well as about the

threads awaiting the lock. When interpreting a lock instruction

that blocks the actual thread, it is checkedwhether there has been a

cyclic wait dependency established by transitively traversing over

the awaited lock and the corresponding lock holders. If a cycle has

been found, a deadlock issue is recorded. The involved threads are

examined to remember an error trace for the issue.

3.5 Abstract States

The interpretation is mostly concrete, i.e. maintains exact states

in the simulation model whenever possible. However, in certain

cases, an exact state is not defined, unless invented values are in-

troduced. Such cases are external input (user input, files, network

etc.) or results of missing or incorrect program code that cannot

be simulated in the sandbox. For such an undefined input, we as-

sume an abstract state, called "uninterpreted value" that stands for

any possible value of that type. At this point, the simulation is no

longer fully exact, but takes potentially imprecise assumptions. If

instructions involve uninterpreted operands, different actions are

taken depending on the instruction type: For a branch instruction

with an uninterpreted branch condition, a random branch is taken.

If a lock, unlock, thread start or thread join refers to an uninter-

preted object, the checker ignores the corresponding instruction.

Moreover, a data race is exempt from the issue report, if it involves

an access to an uninterpreted address. For all other instructions

involving uninterpreted values as operands, uninterpreted values

result from that instruction. The assumptions for uninterpreted

branches, locks, and thread joins reduce precision and may lead

to false positives due to infeasible paths or missing synchroniza-

tion. Conversely, the handling of uninterpreted unlocks or thread

starts, as well as the exclusion of data races with uninterpreted ad-

dresses, could result in overlooked issues, i.e. false negatives. Our

approach is deliberately much simpler than in symbolic execution:

Due to performance reasons, we avoid model checking and do not

maintain potentially complex path constraints or symbolic expres-

sions.

4 IMPLEMENTATION

We implemented the checker algorithm for the C# programming

language. Based on the .NET Compiler Platform (also known as

Roslyn), a plugin for the Visual Studio IDE has been developed

that performs on-the-fly analysis of the source code and reports

the detected concurrency issues and highlights them in the code.

The .NET Compiler Platform already provides the abstract syntax

trees and semantic symbol information of the C# source code. The

framework also enables custom diagnosis plugins that directly run

in the IDE. We implemented such a diagnosis class and derived

the call graphs with intermediate language code from the available

syntax trees and semantic information. Consequently, the diagno-

sis runs the static analysis with the randomized interpretation. As

for the thresholds, the total number of logical steps was bound to

10,000,000 and the per-run limit was set to 1,000,000 logical steps.

The heap size was limited to 8MB. If none of the program entries

involves multi-threading in their first run, we skip any subsequent

runs. The interpretation-based analysis eventually feeds back the

identified data race and deadlock issues with corresponding error

traces. The error displaying is again part of the inbuilt .NET Com-

piler Platform. Our diagnosis is a so-called full-solution analysis

that considers the entire loaded code in the IDE. The checker im-

plementation, excluding automated tests, comprises around 11,000

lines of code.

Specific aspects had to be addressed in the checker algorithm

that are related to C# and the .NET framework, namely the selec-

tion of program entries and C#-specific concurrency features.

4.1 Program Entry Selection

Each interpretation round in the checker needs to start from a pro-

gram entry. Two different strategies are used for the entry selec-

tion, an initial entry or an in-the-middle start.

An initial entry denotes a real starting point into the program.

It depends on the type of the analyzed assembly: For a console

application, this is the main method. The uninterpreted value is

assigned to the parameter of the main method, see Section 3.5. For

graphic user interfaces (UIs), we create and initialize the user inter-

faces and simulate a feasible random UI event sequence. For unit

tests, the entries are the test methods after having instantiated and

initialized the test classes. For libraries, we conservatively consider

all publicly accessible members (methods, constructors, properties

etc.) as entry point and select randomly. It would be possible to

also test concurrent accesses of the library from outside but lack-

ing a formal specification of the library’s thread safety, we consider

sequential library accesses to minimize false positives. Again, un-

interpreted values are assigned to the parameters of library entry

methods. In the case of a non-static method, the corresponding ob-

ject is first instantiated.

Since the interpreter is bounded in the number of steps, we aim

to increase the coverage by also selecting random in-the-middle

starts. For this purpose, we collect methods that directly or indi-

rectly start threads and consider them as potential in-the-middle

starting points. The checker then randomly selects such starting

points for the interpretation. The uninterpreted values are also

helpful here to set up the parameters or related object states. While

this strategy increases the potential of finding more issues, it also

relaxes precision, and is thus a further reason why false positives

are possible.

We select the program entry per assembly (.NET project) of the

program (.NET solution) loaded in the IDE, although we perform a

full-program (full-solution) analysis starting from this entry point.

4.2 Language-Specific Concurrency

This section discusses practical details of the checker with regard

to C#.We support C# version 7withmost language concepts. Some

limitations apply, as described in the next section. Specific concur-

rency features in .NET and C# thereby require special handling:
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• Tasks of a thread pool, as offered by the .NET Task Parallel

Library [20], can be mapped to simple threads in the inter-

pretation. This is because parallel tasks can be scheduled on

different worker threads but not necessarily. We conserva-

tively consider the highest possible concurrency degree.

• Parallel loops and invokes are mapped to a multi-task start

and join pattern. Task continuations are also imitated.

• The UI dispatcher loop is simulated by having a dedicated

UI thread that sequentially schedules the UI events. Proper

synchronization across the events by the submitting threads

is realized.

• The C# async and await [2] programming model is mapped

to equivalent task continuations by considering the two dif-

ferent scheduling options for the post-await continuation,

i.e. with dispatcher and without dispatcher.

• Monitor synchronization with wait and pulsing, as well as

all synchronization primitives, semaphores, reader-writer

locks, barriers, count-down events, auto-reset-event etc. in

the API are simulated with the corresponding vector time

synchronizations.

• Accesses to volatile variables or dedicated volatile memory

accesses are flagged in the corresponding access event of the

threads. Data races are exempt if the two involved accesses

are both volatile.

• Atomic accesses are also implemented and count as volatile

in the access history and the data race detection. Explicit

memory barriers (fences) advance the vector time of the ef-

fecting thread.

• The collection API, both non-thread-safe and the concur-

rent versions, are supported. Concurrent unsynchronized

accesses to same non-thread-safe collection instance are also

reported as an error by the checker.

• Garbage collection is also simulated to identify pending fi-

nalizers at regular intervals. Finalizers often are an over-

looked source of concurrency errors and thus simulated by

a finalizer thread in our checker.

4.3 Limitations

The current checker version has a few implementation restrictions

that may reduce precision and coverage in specific areas:

• Only the C# source code of the active program (.NET solu-

tion) is analyzed, but not the referenced external libraries.

Results from external libraries are treated as uninterpreted

abstract states.

• A few language features are not yet exactly interpreted but

simplified by using abstract states: language-integrated query

(LINQ), parallel LINQ, yield statements, weak references, un-

safe/unmanaged code, and certain standard API functional-

ity.

• The program entry selection for web applications and web

services with ASP.NET and WebApi are not yet specifically

implemented but the assembly is only treated as a conven-

tional library.

These limitations are not for conceptual reasons but a question of

engineering time. We plan to extend the corresponding analysis in

future versions.

5 EVALUATION

We take two approaches to assess the checker: Firstly, we apply

it on larger open-source projects to see whether it is practically

effective. Secondly, we compare it to other concurrency checkers

with smaller tests.

5.1 Practical Evaluation

As for the evaluation with realistic larger projects, we selected

the top ten .NET C# projects from GitHub by the number of stars

awarded in the user ranking. We excluded projects that do not in-

clude thread or task starts in productive code, i.e. code that may

run at a user and is not unit-test or integration-test code. Moreover,

we also skipped the .NET runtime implementations themselves, as

they implement threading in their own classes and do not use it

from an imported standard library, as it is expected in our checker.

The selection hence comprised Roslyn, SignalR, Nancy, ILSpy, Cef-

Sharp, ReactiveUI, MsBuild, Hangfire, Polly, and NLog. We also

searched for .NET projects with keywords on concurrency and par-

allelization and picked the GitHub projects ranked with at least

2000 stars, being Orleans, Akka.Net, and Rx.NET. With this ap-

proach, a benchmark of 13 .NET projects was assembled. For each

project (.NET solution), we used the latest stable version (selected

on 28 June 2017). Table 1 summarizes the different projects, provid-

ing the version, a brief description and code metrics. We counted

the source lines of code (SLOC), the number of classes, the num-

ber of methods (including constructors, property accessors, lamb-

das, inner functions), as well as the code locations with explicit

or implicit thread starts. The "thread starts" metric includes task

launches in a thread pool, but excludes finalizers, task continua-

tions, and await continuations. In total, the benchmark comprises

a substantial code base of about 3.5 million SLOC, much more than

has been reported in previous literature on concurrency checkers.

Our checker was applied to the benchmark of Table 1 inside

Visual Studio 2017 on an Intel i7-4712MQ CPU with 2.3 GHz and

8GB main memory. Each GitHub project (a .NET solution) of the

benchmark consisted of multiple C# assemblies (also called .NET

projects) that were analyzed. Table 2 shows the results: We mea-

sured the total analysis time (including Roslyn compilation), and

the corresponding average time per assembly in that .NET solution.

The analysis proved to be fast, taking 1.71 seconds on average per

assembly, and requiring 12.93 minutes in total for the entire code

base. We also edited the code to see that the checker responded

in similar short period as is desired for an interactive IDE code

analysis. The tool reported 121 issues, all of them data races or

thread-unsafe usage of API, that we eventually studied and clas-

sified. We performed manual code inspection for all reported is-

sues. Many of the 121 detected issues stem from related patterns

or have common root causes. We figured out that these issues had

13 different causes/patterns. Code review also revealed that 14 of

the 121 issues are false positives, and only 107 are real issues, true

positives, that can theoretically occur at runtime, although some

may be unlikely. Out of these 107 issues, 89 reside in productive

assemblies. The remainder belongs to sample or unit test code.

We reported all issues in productive code that we identified as

true positives. Deadlocks have not been found in the code base.

However, to see that the deadlock detection principally works, we
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Table 1: Benchmark of popular open-source C# projects (.NET solutions) with codemetrics, as used for the checker evaluation.

Figure 5: Data race excerpt in Roslyn.

manually inserted deadlock-prone code at program entries (Roslyn

VBCSCompiler.Main andNLog InstallNLogConfig.Main) and no-

ticed that these were correctly identified.

We found the following data races in productive code: In Roslyn,

the checker revealed a case in the language service implementa-

tion where a static constructor launches a task that writes a static

field s_delayMilliseconds, which can be read by methods called

TurnOffLowLatencyMode and UseLowLatencyModeForProcessing-

UserInput, see Figure 5. The risk of occurrence and impact may

be considered relatively low but it is formal data race. In SignalR,

we found several related races (data races and thread-unsafe calls)

in a load test utility called Crank. Since Crank is used as a tool for

testing web applications in the programmer community, we also

consider it as productive code, not as sample or unit test code. Fig-

ure 6 sketches a data race in SignalR that leads to consequent races.

NLog contains a data race pattern involving a timer, see Figure 7.

Our tool detected similar repeated data races in Rx.NET, see Figure

8. In one project, Nancy, we also found a false negative, a data race

that remained undetected by our tool. The reason is that it requires

a specific series of external calls to the library that is not simulated

by our tool. We also reported this issue.

We identified the following reasons for false positives: (1) For

SignalR, the checker missed a happened-before relation for a spe-

cific continuation API call, an issue that we corrected after the

evaluation. (2) For CefSharp, specific ordering of a seldom UI ini-

tialization event (HandleCreated before window initialization) is

not implemented. (3) For MsBuild, the WaitHandle.WaitAny API

call was not yet specifically supported in the interpretation. (4) For

Figure 6: Data race excerpt in SignalR. ThreadPool.

QueueUserWorkItem queues Run() as a thread pool task.

NLog, the timer period was set to an infinite value, meaning it is

a single occurrence that is not yet handled by the checker. These

false positives could be avoided by introducing a broader and more

precise support of the .NET API, which is eventually a question of

effort. The false positive rate is relatively low with 12%, neverthe-

less.

None of the observed false positives is related to the imprecise

interpretation with abstract states. We see three reasons for this:

Firstly, uninterpreted values only stem from a few external sources

(e.g. user inputs) since we analyze the entire project source code

with a limited number of external libraries that cannot be analyzed.

Secondly, none of the detected races depends on execution traces
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Table 2: Evaluation results of the checker with the total and per-assembly analysis times and the detected issues, their under-

lying causes, the grouping into false and true positives, as well as the fraction of issues in productive code.

Figure 7: Data race excerpt in NLog. Although the data race

may seem to be unlikely with long timeouts, it is theoreti-

cally possible.

Figure 8: Data race excerpt in Rx.NET. The timer Dispose()

could run while a subsequent tick is active.

with mutually exclusive branch conditions inferred from uninter-

preted values. The identified data races thus seem to follow sim-

pler patterns regarding branches. Thirdly, locks do typically not

target uninterpreted objects, as it is a C# design practice to lock on

aggregated helper instances inside classes, such that the helper is

concretely interpretable.

5.2 Tool Comparison

We also aim to compare our tool to other concurrency checkers. As

mentioned, there exist only a few maintained and publicly avail-

able concurrency checkers, and unfortunately, none for C#. The

predestined candidate tool CHESS [24] (discontinued in 2009) lacks

64-bit platform support and could not be applied. We therefore

performed an indirect evaluation by assembling a benchmark of

smaller test cases that we ported from C# to other programming

languages, namely Java and C++. For the comparison, we chose

Java Pathfinder (JPF) [26] as a well-known static checker for Java

programs, and ThreadSanitizer [34] as a representative of a dy-

namic checker working on C/C++ code. We built the JPF binaries

from the source repository using the latest checkin of Feb. 2017 and

used ThreadSanitizer as part of the Clang 3.3 compiler.We took the

same machine as in the previous section.

Our benchmark comprises the following characteristic test cases,

each being implemented in C#, Java, and C++: (1) DCL Broken:

The defect double checked locking pattern shown in Figure 1. (2)

DCL Fixed: The correct implementation of double checked lock-

ing, using volatile in C# and Java, and applying atomic accesses

in C++ (as volatile in C does not define a fence). (3) Quicksort

Broken: The defect quicksort implementation explained in Figure

2. In JPF, we had to use threads instead of ForkJoinPool tasks due

to an internal JPF exception. (4) Quicksort Fixed: The correct

quicksort implementation with the fix indicated in Figure 2. (5)

Bank Broken: The deadlock scenario with the bank transfer of

Figure 3. (6) Bank Fixed: The correct bank scenario with acyclic

transfers. (7) Buffer Broken: A producer-consumer scenario with

an unsynchronized bounded buffer, concurrently accessing a non-

thread-safe API collection, therefore leading to race conditions. (8)

Buffer Fixed: The producer-consumer scenario with a properly

synchronized bounded buffer, implemented as a monitor. (9) Time
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Race: An infinite periodic timer with tick events that provoke data

races. (10) Finalizer Race: A data race scenario between a GC

finalizer and the mutator. This case is not applicable for C++ since

C++ has no GC. We had to avoid user inputs in the mentioned

test cases in order not to block JPF (concrete interpretation) and

ThreadSanitizer (dynamic analysis).

Table 3 summarizes the test cases with their actual issues. It also

denotes the runtimes and detected results for the three compared

checkers: Our checker (C#), Java Pathfinder (Java), and ThreadSan-

itizer (C++). The runtimes are the average of three subsequentmea-

surements. They are indicated in seconds and rounded to one sig-

nificant figure, where short runtimes below 100 milliseconds are

not further resolved.

As can be seen, most of the cases are accurately analyzed, i.e.

at least one of the corresponding issues is reported for a broken

test cases and no problem is indicated in a correct version. There

are only a few exceptions: JPF has a false positive on DCL Fixed

as it does not exempt volatile accesses from data races. Thread-

unsafe collection accesses remain undetected in JPF, explaining the

false negative in the Buffer Broken case. The false negative on

Finalizer Race occurs because JPF does not examine GC final-

izers. ThreadSanitizer does not feature a deadlock detection, and

therefore misses the corresponding issue in the Bank Broken test.

Generally, short analysis times of a few seconds were measured,

although with a few exceptions: Certain cases ran for a very long

time in JPF due to an exponentially grown search space, and we

manually stopped them after an hour. This shows how a static anal-

ysis like JPF can lead to impractically long runtimes, even for the

relatively small programs of this comparison. As for ThreadSan-

itizer, certain analyses did not terminate because the tested pro-

gram were endless themselves (Quicksort Broken due the bug

explained in Figure 2, and Timer Race due to its infinite periodic

ticker).

Our checker exhibits short analysis times of usually less than

one second. Only the quicksort case required more time than in

the other checkers. A reason for this is that our checker does not

stop on the first data race encounter but continues its search. More

specifically, it reports 10 data races for the Quicksort Broken case,

while JPF reports one data race, and ThreadSanitizer three data

races.

6 RELATEDWORK

As concurrency analysis is a heavily studied research field, we can

only discuss a selected set of prior work. The discussion is catego-

rized into static and dynamic analysis.

6.1 Static Analysis

Bug style checkers are predominant in industrial application, e.g.

checkers, e.g. FindBugs for Java [15] or Code Analysis for .NET

[23]. As these checkers only statically identify specific code anti-

patterns, including concurrency-related bugs, they do not perform

an overall analysis, and are unable to detect data races or dead-

locks in general. Their advantage and probably also the reason for

the prevalence is, however, the relatively fast execution time of a

few seconds, even for MLOC programs. The work of Santhiar and

Kanade [31] detects a specific concurrent thread blocking pattern

in the async-await programming model of C#.

The lockset algorithm is a broadly known static data race detec-

tion method. It has been introduced by Warlock [35], and applied

in RacerX [9] and others [18, 25, 39, 41]. The idea is to gather the

taken locks per memory access and verify that all accesses to the

same location carry at least a common lock. It is a flow-sensitive

analysis, except for Warlock. RacerX additionally performs a dead-

lock analysis by also computing the lock orders. The limitation of

the basic lockset algorithm and its checkers [9, 18, 35, 39] is that

it ignores that only specific code regions run effectively concur-

rent to each other. This makes the approach prone to false posi-

tives. For this purpose, code annotations [9, 35] or heuristic dis-

crimination of code into concurrent or non-concurrent [9] is used.

Chord [25] improves the precision by implementing extra analy-

ses, such as of aliasing and thread starts. The static analysis of

von Praun and Gross [41] additionally considers thread joins. May-

Happen-in-Parallel (MHP) relations [27] give a more precise def-

inition of which instructions may run concurrently. Static vector

clocks [45] thereby offer a very efficient approach to compute these

relations, achieving higher precision than other static checkers. All

these mechanisms are sound, though some with specific exemp-

tions, which is the major advantage over our checker. They, how-

ever, inherently have less precision than our approach as we only

simulate a series of mostly concrete program traces.

Precision in data race analysis can also be increased by constraint-

based analysis, such as in Locksmith [29], or model checking [4,

24, 26, 36]. Such analysis, however, inherently suffer from the ex-

ponential state explosion problem, making it often inapplicable to

larger programs. Despite numerous techniques against state explo-

sion [3], the search space of practical multiple KLOC programs is

still too large to be analyzable in only a few seconds. Java Pathfinder

(JPF) [26] performs a concrete interpretation similar to our checker

but with an exhaustive analysis, thus also having exponential run-

times. The same applies to CHESS [24] that systematically explores

all concurrent schedules, althoughwith a stateless replay technique.

A concrete interpretation, however, requires a programwithout ex-

ternal IO inputs to be automatically testable. Abstract interpreta-

tion [5] can reduce the state space but the analysis time still grows

exponentially. This has also been applied to JPF [26]. Symbolic

execution [1] maintains as many concrete states as possible but

can deal with unknown external inputs, by using symbolic expres-

sions and deriving path constraints that are eventually analyzed by

a model checker. Moreover, Polyspace [36] is an industrial static

checker that detects data races and deadlocks based on abstract in-

terpretation. Some static checkers trade soundness against higher

precision and higher performance: Bounded model checking [3]

limits the analysis depth but still leads to exponential state spaces.

Prior art on random interpretation [6, 13] does not tackle data race

or deadlock analysis. Our checker uses a mostly concrete interpre-

tation, with a certain extent of abstraction, in combination with

randomized thread scheduling.

Except for the bug style checkers, JPF [26], and the Polyspace

checker [36], all the mentioned static tools are either publicly un-

available or no longer maintained. The CHESS [24] project has

been discontinued after 2009 and newer .NET programs can no

longer be analyzed.
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Table 3: Comparison of our checker (C#) to Java Pathfinder and ThreadSanitizer (C/C++).

6.2 Dynamic Analysis

Dynamic checkers have certain prevalence in practice because of

their precision. They commonly instrument programs to monitor

the program execution and thereby detect runtime errors that ef-

fectively occurred. Some examples of practically used and main-

tained dynamic concurrency checker tools are Intel Inspector [17],

Thread Sanitizer [34], orHelgrind [38]. They typically analyze happ-

ened-before relations [19] which is the most precise algorithm.

Earlier dynamic checkers used weaker algorithms than happen-

ed-before analysis: The earliest known dynamic checker of data

races [22] focused on start/join dependencies instead of general

synchronizations. Later, Eraser [32] applied the lockset algorithm.

A different approach is taken by von Praun and Gross [40] by track-

ing object ownership at runtime. O’Callahan and Choi [28] use a

hybrid of happened-before and lockset analysis.

LiteRace [21] speeds up the happened-before-based data race

analysis using sampling to a certain extent instead of fully instru-

mented code. FastTrack [11] and AccuLock [42] avoid costs of un-

necessarily fine-grained vector clocks by adaptive representations

of the happened-before relations. RaceTrack [44] applies adaptive

granularities in the race detection, from the object level down to

field level, to make the dynamic checker faster. DataCollider [10]

introduces a light-weight random sampling techniques based on

breakpoints that performs very effectively for low-level kernel code.

Predictive testing [16, 30, 43] combines static analysis with a

dynamic checker: Generally, from the postmortem dynamic trace,

alternative feasible schedules are statically derived to also detect

issues in those traces by using a constraint solver. A similar hybrid

approach is taken by concolic testing [12]: Programs are tested by

concrete execution using initial random inputs, while simultane-

ously performing a symbolic execution to derive path constraints.

The constraints eventually serve to derive new input cases for sub-

sequent execution. The difficulty often is the computational com-

plexity of a constraint solver.

ConTest [7] is related to our checker insofar that it also intro-

duces random thread interleaving by introducing sleeps for data

race and deadlock detection. Contrary to this, we never effectively

delay the threads by sleeps in our checker, but directly simulate the

scheduler. Rapos [33] proposes amore sophisticated random sched-

uler that experimentally performs more uniformly with regard to

non-equivalent thread interleaving selects a sub-set of mutually

independent runnable threads. We choose the simple scheduler,

as we can then avoid the mutual thread independency analysis

in each scheduler round. An empirical study [37] also shows that

naive random scheduling performs relatively effectively in compar-

ison to more sophisticated approaches. Delay-bound scheduling

[8] adds a fix of variations in an otherwise-deterministic scheduler

to make it non-deterministic.

As is the case with all dynamic checkers, our checker aims at

precision but is unsound. However, as our checker is static and

not dynamic, it does not require a running program and can deal

with incomplete program parts and external inputs.

From a practical perspective, the following discussed tools are

still publicly available andmaintained according to our study: Intel

Inspector [17], ThreadSanitizer [34], and Helgrind [38].

7 CONCLUSION

Concurrency errors should be eliminated as early as possible, ide-

ally already at coding time in the integrated development envi-

ronment. For this use case, a static analysis with short duration

and high precision is considered important, even if does not nec-

essarily detect all issues. We took the approach of mostly concrete

interpretation with random scheduling and bounded exploration

for this purpose. This mechanism has been implemented for C#,

by covering the broad concurrency spectrum of the language, in-

cluding task-based and asynchronous programming, the various

synchronization primitives, as well as, atomic/volatile accesses and

GC finalizers. Offered as a plugin for Visual Studio, it analyzes the

source code of the IDE in the background and directly marks issues

in the code. The experimental evaluation of popular open-source

C# projects shows that the checker can uncover a good amount of

concurrency issues. The analysis thereby takes a few seconds per

C# assembly and only exhibits few false positives.

AVAILABILITY

The HSR Parallel Checker is available for free in the Visual Studio

Marketplace. More information can be found on the project web-

site: http://parallel-checker.com.

ACKNOWLEDGMENT

I thank Christoph Amrein for certain code extensions, such as the

configuration dialog and several bug-fixes, as well as, for the re-

view of experimental results.

230



Practical Detection of Concurrency Issues at Coding Time ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES
[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and

Irene Finocchi. 2016. A Survey of Symbolic Execution Techniques. CoRR (2016).
[2] Gavin Bierman, Claudio Russo, Geoffrey Mainland, Erik Meijer, and Mads Torg-

ersen. 2012. Pause ’n’ Play: Formalizing Asynchronous C#, In ECOOP 2012 –
Object-Oriented Programming. 7313 2012, 233–257.

[3] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded
Model Checking Using Satisfiability Solving. Formal Methods in System Design
19, 1 (01 Jul 2001), 7–34.

[4] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Syn-
chronization Skeletons Using Branching Time Temporal Logic. In In: Kozen, D.,
Ed., Logics of Programs. Springer, 52–71.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL ’77). 238–252.

[6] Patrick Cousot andMichaelMonerau. 2012. Probabilistic Abstract Interpretation.
In Proceedings of the 21st European Conference on Programming Languages and
Systems (ESOP’12). 169–193.

[7] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel
Ur. 2003. Framework for Testing Multi-Threaded Java Programs. Concurrency
and Computation: Practice and Experience 15, 3-5 (2003), 485–499.

[8] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2010. Delay-Bounded
Scheduling. Technical Report. https://www.microsoft.com/en-us/research/
publication/delay-bounded-scheduling/

[9] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In Proceedings of the Nineteenth ACM Sympo-
sium on Operating Systems Principles (SOSP ’03). 237–252.

[10] John Erickson, Madan Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. 2010.
Effective Data-Race Detection for the Kernel. In Operating System Design and
Implementation (OSDI’10). USENIX.

[11] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In In Proceedings of the ACM SIGPLAN 2009 Conference
on Programming Language Design and Implementation.

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’05). 213–223.

[13] Sumit Gulwani and George C. Necula. 2005. Precise Interprocedural Analysis
Using Random Interpretation. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’05). 324–337.

[14] Richard C. Holt. 1972. Some Deadlock Properties of Computer Systems. ACM
Comput. Surv. 4, 3 (Sept. 1972), 179–196.

[15] David Hovemeyer andWilliam Pugh. 2004. Finding Bugs is Easy. ACM SIGPLAN
Not. 39, 12 (Dec. 2004), 92–106.

[16] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound
Predictive Race Detection with Control Flow Abstraction. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI ’14). 337–348.

[17] Intel Corp. 2017. Inspector Xe. (2017). https://software.intel.com/
intel-inspector-xet

[18] Vineet Kahlon, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta. 2007. Fast
and Accurate Static Data-Race Detection for Concurrent Programs. Springer Berlin
Heidelberg, Berlin, Heidelberg, 226–239.

[19] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565.

[20] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. 2009. The Design of
a Task Parallel Library. In Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA ’09).
227–242.

[21] Daniel Marino, Madanlal Musuvathi, and Satish Narayanasamy. 2009. LiteR-
ace: Effective Sampling for Lightweight Data-Race Detection. In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’09). 134–143.

[22] John Mellor-Crummey. 1991. On-the-fly Detection of Data Races for Programs
with Nested Fork-join Parallelism. In Proceedings of the 1991 ACM/IEEE Confer-
ence on Supercomputing (Supercomputing ’91). 24–33.

[23] Microsoft Corp. 2017. Code Analysis for Managed Code Overview.
(2017). https://docs.microsoft.com/en-us/visualstudio/code-quality/

code-analysis-for-managed-code-overview
[24] MadanMusuvathi, Shaz Qadeer, and TomBall. 2007. CHESS: A Systematic Testing

Tool for Concurrent Software. Technical Report. Microsoft Research. MSR-TR-
2007-149.

[25] Mayur Naik, Alex Aiken, and JohnWhaley. 2006. Effective Static Race Detection
for Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’06). 308–319.

[26] NASA Ames Research Center. 2007. Java Pathfinder (JPF). (2007). http://
babelfish.arc.nasa.gov/trac/jpf

[27] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. 1999. An Efficient Algo-
rithm for Computing MHP Information for Concurrent Java Programs. SIGSOFT
Softw. Eng. Notes 24, 6 (Oct. 1999), 338–354.

[28] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data Race De-
tection. In Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’03). 167–178.

[29] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. 2006. Locksmith:
Context-Sensitive Correlation Analysis for Race Detection. In In PLDI âĂŹ06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming language de-
sign and implementation. ACM Press, 320–331.

[30] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. 2011. Generat-
ing Data Race Witnesses by an SMT-Based Analysis. Springer Berlin Heidelberg,
Berlin, Heidelberg, 313–327.

[31] Anirudh Santhiar and Aditya Kanade. 2017. Static Deadlock Detection for Asyn-
chronous C# Programs. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2017). 292–305.

[32] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multi-Threaded
Programs. In Proceedings of the Sixteenth ACM Symposium on Operating Systems
Principles (SOSP ’97). 27–37.

[33] Koushik Sen. 2007. Effective Random Testing of Concurrent Programs. In Pro-
ceedings of the Twenty-second IEEE/ACM International Conference on Automated
Software Engineering (ASE ’07). ACM, New York, NY, USA, 323–332.

[34] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the Workshop on Binary Instrumen-
tation and Applications (WBIA ’09). 62–71.

[35] Nicholas Sterling. 1993. Warlock: A Static Data Race Analysis Tool. In Winter
USENIX. San Diego, California, 97–106.

[36] TheMathWorks Inc. 2017. Polyspace Static Analysis – Concurrency: Race Condi-
tions and Deadlocks. (2017). https://www.mathworks.com/products/polyspace/
concurrency-race-conditions-deadlocks.html

[37] Paul Thomson, Alastair F. Donaldson, and Adam Betts. 2014. Concurrency Test-
ing Using Schedule Bounding: an Empirical Study. In 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP’14). 15–28.

[38] Valgrind Project. 2005. Helgrind: A Data-Race Detector. (2005). http://valgrind.
org/docs/manual/hg-manual.html

[39] Vesal Vojdani and VarmoVene. 2009. Goblint: Path-Sensitive Data Race Analysis.
Annales Univ. Sci. Budapest., Sect. Comp (2009).

[40] Christoph von Praun and Thomas R. Gross. 2001. Object Race Detection. In Pro-
ceedings of the 16th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA ’01). 70–82.

[41] Christoph von Praun and Thomas R. Gross. 2003. Static Conflict Analysis for
Multi-threaded Object-oriented Programs. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation (PLDI ’03).
115–128.

[42] Xinwei Xie, Jingling Xue, and Jie Zhang. 2013. Acculock: Accurate and Efficient
Detection of Data Races. Software: Practice and Experience 43, 5 (2013), 543–576.

[43] Adarsh Yoga, Santosh Nagarakatte, and Aarti Gupta. 2016. Parallel Data Race
Detection for Task Parallel Programs with Locks. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). 833–845.

[44] Yuan Yu, Tom Rodeheffer, andWei Chen. 2005. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking, In ACM Symposium on Operating
Systems Principles (SOSP 2005). 33.

[45] Qing Zhou, Lian Li, Lei Wang, Jingling Xue, and Xiaobing Feng. 2018. May-
happen-in-parallel Analysis with Static Vector Clocks. In Proceedings of the 2018
International Symposium on Code Generation and Optimization (CGO 2018). ACM,
New York, NY, USA, 228–240.

231


