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Abstract. The native parallelization support in predominant program-
ming languages focuses on local cores, while mostly neglecting the huge
parallelization potential of distributed execution. We have therefore de-
veloped a runtime system that automatically distributes ordinary shared
memory parallel tasks into the cloud, to execute them on a large number
of cores, e.g. on a cluster. The runtime mechanism takes care of trans-
mitting the necessary task code and data to the service, as well as of
propagating task results and side-effect changes back to the client mem-
ory. For programs with long-running tasks or a high amount of tasks,
the system is able to soon compensate the network transmission over-
heads and thereafter scale with the number of tasks up to the available
server-side cores.

1 Introduction

Today’s mainstream programming languages principally target only on local
multi cores with their institutionalized parallelization features, as it fits well
to their underlying shared memory model. However, moving from local to dis-
tributed parallelization, imposes the substantial extra burden for the developers
to leave their conventional programming model and close the gap to distribution
on their own, e.g. by redesigning the programs for specific distribution frame-
works (e.g. service, remoting, or grid computing architectures) or by engaging
a different more distribution-friendly programming paradigm (e.g. descriptive
dataflow models).

It is therefore of no surprise that parallelization in daily programming prac-
tice largely concentrates on utilizing local processors, while mostly neglecting
distributed parallelization - unless there is a strong performance urge justifying
the efforts of a corresponding dedicated solution. Another strong distribution
obstacle is the fact that developers and users normally do not have remote pro-
cessor power at hands, although many clusters and distributed systems would
have free capacities — but unfortunately without an easy-to-use “parallelization-
as-a-service” interface.

There has been intensive research done in this area, principally going into
three main directions: (1) new/different programming models inherently suited



for distribution, such as Actors/MPI [5, 1], or dataflow/query models [13, 3], (2)
distributed task/thread frameworks, e.g. in the grid computing area [6, 10, 12],
and (3), distributed shared memory systems [9, 2,15, 4]. While the first direction
takes the more radical approach of tackling the distribution impedance already at
its roots, it usually compels programmers to apply the different paradigm on top
of or aside their ordinary imperative shared memory programming language. The
second direction, represented by the grid computing or distributed thread/task
frameworks, typically leads to visible seams in the program design: it necessitates
explicit task and data offloading, marking data serializable, wrapping data in
specific sub-classes and so on. The third direction, distributed shared memory
systems, transparently enables distribution of normal shared memory programs
across machines. Although, it is usually heavy-weight for this purpose, operating
on the whole program rather than selectively on the distributed parallel parts.
A more detailed survey of related work is given in Section 5.

Our research goal is to significantly ease distributed parallelization by provid-
ing a new runtime system that allows scaling up parallel programs seamlessly on
massive processor power in the cloud, i.e. with the same programming model as
for local parallelization and without requiring any explicit code and data trans-
missions. For this purpose, we propose an enhanced thread pool mechanism that
transparently integrates remote multi-processing: Although described like con-
ventional local parallel tasks operating on shared memory, the runtime system
automatically distributes the tasks to a web service into the cloud. Behind the
service, the tasks are to be executed on a large number of cores before their
results and their potential effected memory changes are finally sent back to the
client runtime. The web service is of our design and can abstract an arbitrary
parallel processing infrastructure behind the interface, e.g. a high-performance
computer cluster. We have realized this system for the .NET framework, to
demonstrate the concept by the example of a popular shared memory program-
ming platform.

The remainder of this paper is structured as follows: Section 2 describes the
programming model of distributed parallel tasks. Section 3 explains the design
and implementation of the runtime system. Section 4 presents performance and
scalability results. Section 5 compares distributed task parallelization to related
work. Section 6 finally draws a conclusion of this work.

2 Programming Model

Task parallelization as a service encourages programmers to implement and start
distributed parallel tasks that can be dispatched and executed on remote pro-
Cessors.

2.1 Distributed Tasks

In our system, which is based on .NET, distributed tasks can be programmed like
conventional local thread pool tasks offered by the .NET task parallel library [8].



var distribution = new Distribution(ServiceURL, AccessCode);
var taskList = new List<DistributedTask<long>>();
foreach (var number in inputs) {
var task = DistributedTask.New(
() => Factorize(number)

)s
taskList.Add(task);

distribution.Start(taskList);
foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long Factorize(long number) {

for (long k = 2; k * k <= number; k++) {
if (number % k == @) { return k; }

}

return number;

¥

Fig. 1. Distributed parallel tasks factorizing numbers.

A distributed task is implemented as an ordinary .NET delegate! or lambda?. In
principle, working with distributed tasks remains analogous to using local par-
allel tasks, i.e. they can be instantiated, started, and joined. Certain restrictions
apply for distributed tasks: Inner synchronization and calls to IO are for exam-
ple forbidden. A detailed explanation of restrictions is provided in subsequent
sections.

Figure 1 shows a code example for factorizing a set of numbers in parallel,
each number being factorized as a separate distributed task. No extra compi-
lation step is involved here; adding a reference to the library of our cloud task
parallelization is sufficient for the runtime mechanism. The code sample looks
very similar to the local task parallelization, as depicted in Figure 2. The URL
and access authorization code need to be specified in advance for the remote task
parallelization service, before a set of tasks can be started. Accessing task results
blocks as long as the corresponding task is not terminated, where task faults are
propagated as exceptions. We deliberately did not unify the local and distributed
task class because we would like to encourage explicit combined starts of multi-
ple distributed tasks for reducing network roundtrips, whereas the existing local
task class promotes starting one-by-one.

For increased convenience, distributed tasks can also be applied in the form
of data parallelism (Figure 3), by using parallel invocations or parallel loops.
As for a parallel loop, each loop step starts a distributed task that executes the
body and is joined again at the loop end.

Alike local tasks, distributed tasks are allowed to also perform side-effect
changes on disjoint memory locations in shared memory, as also illustrated in
Figure 3. The modifications in the array outputs of the example become

L' A .NET delegate is a reference to a method and an associated object.
2 A NET lambda is an anonymous delegate in the form of an inline statement or
expression with access (closure) to variables of its lexical scope.



var taskList = new List<Task<long>>();
foreach (var number in inputs) {
var task = Task.Factory.StartNew(
() => Factorize(number)

)5
taskList.Add(task);
}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Fig. 2. Analogous solution with local parallel tasks.

distribution.ParallelFor(@, inputs.Length, (i) => {
outputs[i] = Factorize(inputs[i]);

s

Fig. 3. Distributed data parallelism.

automatically visible after task completion. For this purpose, the runtime system
collects side-effect changes of tasks at the server side and propagates them back
to the client-side memory. The system detects certain data races, as described
in the next section.

2.2 Task Isolation

Distributed tasks are required to be independent of all other active tasks and
threads, i.e. read-only accesses on shared variables and arbitrary accesses on
non-shared variables are allowed. The granularity of variable accesses is per field
or array element. Notably, this does not constitute a strong limitation because
for local task code, synchronization in task execution is usually also avoided for
highest possible performance. This applies for both synchronization primitives
and memory model atomicity /visibility. The demanded task isolation eases the
distribution significantly, since it excludes information flow between active dis-
tributed tasks, as well as, between active distributed tasks and the remaining
program code. Our system detects certain violations of task isolation, namely
when tasks employ synchronization, or when write-write conflicts happen due to
data races. Read-write conflicts are not detected though: The reading task will
not see the change of another concurrent task (snapshot isolation). In contrast,
data races in local concurrency are not detected at all, while our system detects
at least write-write conflicts.

2.3 Security Concerns

The runtime system prevents distributed tasks from directly or indirectly exe-
cuting IO operations, system calls, reflection or unsafe/unmanaged .NET code.
IO and system calls are not allowed because we do not delegate these calls back
to the client, such that they would otherwise become effective on the remote ma-
chines. If reflection and unmanaged code would not be forbidden, programmers



could accidentally or intentionally inspect or modify arbitrary program state or
corrupt memory safety at the remote side.

3 Runtime System

The system for distributed task parallelization consists of three components: a
client runtime library, the cloud processing web service, and a server runtime
library.

3.1 Processing Roundtrip

The processing of distributed tasks involves the following steps, as illustrated in
Figure 4: (1) The potentially executed program code and accessible data of the
invoked tasks are collected and serialized by the client side library at runtime.
(2) The serialized code and data are shipped to our web service which represents
the cloud processor resources. (3) The service distributes the tasks on server-side
compute nodes, currently by launching a HPC cluster job consisting of a HPC
task per input .NET task, i.e. by using the default task scheduling of the cluster.
(4) The code and data are deserialized and instantiated by the server runtime
library on each server compute node. (5) The remote tasks are executed on the
compute nodes. (6) When terminated, the results and modified data of tasks are
collected and serialized by the server runtime library. (7) The serialized data of
task completion is sent back to the initiating client over the web service. (8) The
updates are finally made effective in local memory of the client.

3.2 Task Serialization

When tasks are started for distribution, the client runtime component serializes
the necessary code and data in two phases by way of reflection.

In a first phase, a conservative context-insensitive code analysis determines
all reachable program code. Starting from the task delegate, the transitive closure
of potentially directly or indirectly invoked methods is calculated. Additionally,
it records all potentially used classes and accessed fields within the reachable
methods. The code of each visited method is examined to only contain supported
instructions and calls according to the security constraints (the system triggers
a runtime exception if the code cannot be distributed). The set of reachable
methods and their intermediate language code is eventually serialized.

In a second phase, all potentially accessed task data is collected. For this
purpose, the system generates a partial heap snapshot, being the graph of objects
that are reachable via references from the task delegate, by only considering the
references occurring in potentially accessed fields according to the preceding
code analysis. For the collected objects, only the state of accessible fields needs
to be serialized. Besides the objects, the snapshot also includes static fields and
constants that can be used by tasks. Because of the required task isolation, the
runtime serialization delivers a consistent state without need of synchronization,
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Fig. 4. Distributed task runtime system.

i.e. the system never blocks other running threads. Due to the conservative
analysis, the snapshot may, however, include data that is not effectively accessed
by the tasks and therefore also not required to be isolated: the state of this data
may be inconsistent though but it is also never accessed by the distributed tasks.

3.3 Task Results

The server runtime component returns all necessary information of completed
tasks, such as the task delegate result value, modifications on transmitted objects
and static data (updates of fields and array elements), as well as, all reachable
new objects that have been created by the remote task execution. The client in
turn performs the in-place updates on arrival of the task completion information,
i.e. modifications are applied to the corresponding objects and static fields of its
input snapshot. We perform change detection by comparing the field and array
element state before and after task execution. With this approach, the client
runtime also detects certain data races, namely illegal write-write conflicts across
distributed tasks. If remote task execution fails (e.g. due to a thrown exception),
an aggregated exception is propagated to the client.

3.4 Service Design

Task code (program metadata and intermediate language code) and data (object
graph and static fields) are encoded in an own binary format to reduce client-to-
service traffic as much as possible. The service functionality basically comprises



two operations, one for starting a set of tasks and another for awaiting the
termination of a set of tasks. To reduce network roundtrips, multiple tasks can
be sent in one bunch, where the task instances can also share the same task
code. To support secured network transmission, a HTTPS service binding can
be used.

4 Experimental Results

Distributed task parallelization is intended for running computing-intensive tasks
and/or a large amount of tasks, offering a high potential of parallelization.

4.1 Measurement Setup

For an experimental evaluation of our current system version, a set of synthetic
parallel problems have been implemented on the basis of distributed tasks and
eventually run in an environment with a MS HPC computer cluster behind the
cloud service. The cluster comprises 32 nodes with 12 Intel Xeon cores, 2.6 GHz
each (of which we were allowed to use 100 cores, 8 nodes with 12 cores plus 1 node
with 4 cores for our experimental study). The client and web service each run on
an Inte processor, 2 cores, 2.9 GHz machine, with 100Mbit/sec bandwidth and
1ms network delay between client, service and the cluster. All measurements have
been performed by using compiler-optimized 64-bit .NET program assemblies.
For all runtime results, the minimum of three repeated runtimes is considered,
to reduce negative influences of temporary network speed fluctuations.

4.2 Performance Scalability

To study the performance scalability, we measure the runtime for a set of in-
dependent computation tasks. To start with a first scenario, we compute the
factorization of a set of sample 64-bit numbers, each composed of two random
prime factors around 232. Naturally, the same random seeds and numbers are
used to ensure reproducible measurements. Each number is factorized indepen-
dently in a parallel task. The comparison involves three processing approaches:
(1) with distributed tasks, (2) with local tasks, and (3) sequential execution.
Figure 5 shows the runtime in seconds depending on the amount of input num-
bers, which is equal to the number of parallel tasks. As expected, the parallel
speedup of distributed tasks scales linearly with the number of tasks — in this
scenario, each task runs on a separate instance of the 100 available cores. Local
parallelization only offers a speedup of 2 on the two core client machine. Of
course, the speedup also depends on the number of free cores available in the
cluster.

4.3 Cost Breakdown

The runtimes for distributed task parallelization involve different performance
cost factors, which vary from problem to problem: (1) the effective task execu-
tion time on the server side, (2) the network transfer time from the client over
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Runtime costs Factorization
(seconds) (10 numbers)
Node execution 184

Network transfer 19
Cluster dispatching | 0.3
Task serialization 0.3

Table 1. Runtime costs breakdown.

the service to the cluster, (3) the cluster dispatching costs, and (4) the accu-
mulated effective overheads of our runtime mechanism, that is task serialization,
deserialization, and change/result propagation. Table 1 depicts the breakdown of
runtime costs in seconds for the factorization of 10 numbers, i.e. for 10 tasks. In
this scenario, task execution represents the most significant part: this is the time
where tasks are executed in parallel on the cluster. Network transfer constitutes
the second most substantial portion. The remaining cost factors, including our
own runtime mechanism, are relatively small.

4.4 Performance Comparisons

For a more general performance comparison, we evaluate the runtimes for differ-
ent problem cases: (1) Mandelbrot fractal computation for a specified image size,
as a representative of a parallel problem with a higher data amount compared
to the task computation time. (2) Knight tours computation on a chess board
of a specified size, as a representative for relatively long-running task compu-
tations. (3) Primes scanner counting primes in a specified number range, as a
representative of relatively short-running tasks. Table 2 shows the runtimes in
seconds, rounded to two significant figures, for the specified instances of these
problems. We again compare distributed task parallelization (100 cores), local
task parallelization (2 cores) and sequential execution. Once more, significant
performance improvements can be achieved with the runtime support of dis-



Runtime Mandelbrot Primes Scanner Knight Tours
(seconds) (10000 x 1000) (range 10%) (6 x 6 board)
Distributed 8.0 47 120

Local parallel 20 9.2 1100
Sequential 37 19 2200

Table 2. Performance comparison of parallel problems.

tributed tasks. The involved data is around 1.25 MB for Mandelbrot (0.25 MB
compressed input and 1 MB compressed output), while it is around 100 KB for
knight tours and 80 KB for primes scanner.

4.5 Result Discussion

As expected, the examples confirm that the runtime system is able to reach a
high parallel speedup by the large amount of remote cores. However, the gain of
parallelization needs to compensate the involved overheads, which are primarily
the network transmission time, depending on the size of task serialization, the
data bandwidth and network delay. Distributed task parallelization is therefore
generally beneficial if a large amount of tasks is executed, tasks are running
sufficiently long, or tasks entail relatively low data transfer.

5 Related Work

5.1 Distributed Data Parallelism

Microsoft DryadLINQ [13], built on the distributed runtime engine Dryad [7],
has close relation to our system: It permits automatic distributed processing of
NET LINQ [11] queries on clusters. While this model is oriented on descriptive
programming of distributed dataflows in terms of queries, our system promotes
more imperative task or data parallelization. Therefore, our system also allows
distributed tasks to perform side-effects or changes that are propagated to the
client, while the only backflow in DryadLINQ evaluations are the query results.
Side effects of delegates inside the queries of Dryad LINQ are ignored.

MapReduce [3] and in particular, also the Hadoop MapReduce implementa-
tion3, are popular dataflow programming models for high-scale distributed par-
allelization. The integration in a client program is, however, less seamless than
in our model: Data is to be explicitly passed to the map and reduce functions
from files or serializeable key-value sets. This is different to the shared memory
illusion of our model, where the data of distributed tasks is automatically trans-
mitted. MapReduce does also not directly incorporate a cloud approach where
clients can easily offload their dataflows to a service. Though, such architecture
can be designed around.

% http://hadoop.apache.org



Other grid computing systems such as Pegasus? and Swift [14] also facilitate
DAG-like task workflow distribution on cloud computing resources but again
with explicitly programmed data and task transmission. CIEL [12] supports
powerful parallel task workflows with dynamic task spawning implemented in
a specific language (Skywriting). Tasks can trigger batch commands, or invoke
Java/ NET code in a less transparent way than our system: by denoting the
class name and passing arguments and results.

5.2 Distributed Task Parallelism

Existing distributed thread/task programming frameworks, such as JPPF?, Hadoop,
ProActive Parallel Suite® [6], the already mentioned CIEL Skywriting [12], Al-
chemi [10], Manjrasoft Aneka .NET Tasks’, and many others, make distribution
significantly more visible than in our system: heap data from the client program

is not automatically shared across distributed processes but must be passed as
explicitly serializeable objects within task parameters and results, or has to be
managed in specific grid heaps or distributed data collections. However, the focus

of our system is on enabling mostly seamless and convenient task parallelization
on remote processor resources.

5.3 Message Passing Models

The Actor model [5, 1] facilitates inherent distribution of active instances (actors)
across machines, because actors only interact via explicit message communica-
tion and do not share memory. If applied within a conventional shared memory
language (e.g. with MPI), this indispensably provokes a semantic gap, since pro-
grammers need to think in a different paradigm than the native language and
have to stick to particular conventions. For example, actor communication must
not be bypassed by ordinary references.

5.4 Distributed Shared Memory

Various systems have realized virtual shared memory on distributed computers,
be it at the operating system level [9,4] or at the runtime system of a pro-
gramming language [2, 15]. While this can establish automatic distribution of an
entire program, our system employs distribution only selectively for task paral-
lelization. Moreover, we provide the distribution as a service for use by a possibly
open group of clients.

4 http://pegasus.isi.edu/

® http://jppf.org

5 http://proactive.activeeon.com
" http://www.manjrasoft.com



6 Discussions and Conclusions

The presented runtime system enables seamless distributed task parallelization
with the illusion of shared memory. While the programming model remains prin-
cipally identical to working with local parallel tasks, the runtime engine auto-
matically dispatches tasks over a service onto remote processor resources in the
cloud. In contrast to other less seamless systems, this liberates developers from
any distribution-specific programming artefacts, such as developing explicit re-
mote code, realizing explicit communication, implementing any serialization, or
wrapping/marking/attributing code or data for distribution-awareness.

Of course, distributed task parallelization is not appropriate for all classes of
parallel problems. It is rather designed for computing-intensive tasks or a large
amount of tasks, where it can achieve very high speedups. Thereby, the total
task execution time has to be significantly larger than the network-dependent
transmission time of task data between the client and the service.

We see a high potential if programmers can use “parallelization-as-a-service”
in a way that is as simple and convenient as our task parallelization in the cloud.

Certainly, there is room for various improvements that we would like to
address in future: (1) The runtime system could be enhanced to support more
features, especially nested task starts, task chaining, task canceling, as well as,
remote monitoring and debugging. (2) It could be investigated on alleviating task
isolation by permitting well-defined synchronizations across tasks. (3) It would
be interesting to offer a public parallelization service where users can directly
consume and perhaps also offer multi-processor power on demand.
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