Alea Reactive Dataflow: GPU Parallelization Made Simple

presented at the 2014 SPLASH conference REBLS workshop without formal proceedings

Luc Bliser

University of Applied Sciences
Rapperswil
Institute for Software

Iblaeser@hsr.ch

Daniel Egloff

QuantAlea Inc. Zurich
daniel.egloff@quantalea.net

Philipp Kramer

University of Applied Sciences
Rapperswil
Institute for Software

pkramer@hsr.ch

Xiang Zhang

QuantAlea Inc. Zurich
xiang.zhang@quantalea.ch

Abstract

Making effective use of the GPU parallel power requires relatively
complex and tedious work: Understandably, most programmers
spare the efforts. The Alea reactive dataflow programming model
now aims to substantially lower this threshold by simplifying GPU
parallelization quite radically. Programs are described as data that
is asynchronously propagated through a graph of operations, each
typically predestined for vector parallelization. Programmers do no
longer need to write GPU-specific code but instead leave the GPU-
parallelization to the runtime system. Due to the declarative and
reactive paradigm, operations can be easily scheduled as parallel
streams on a GPU with minimum memory copying overheads.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures

General Terms Languages

Keywords GPU; parallelization; reactive; dataflow

1. Introduction

For many programmers, the threshold for engaging GPU paral-
lelization is too high. In order to make adequate use of the many
cores of a GPU, several obstacles need to be taken: (1) Algorithms
need to be tailored for vector parallelization since the cores are
de facto per-element views of vector-parallel instructions. (2) The
parallel implementation is based on a rather low-level machine-
centric programming models such as CUDA [1], OpenCL [2], or
other alternatives [3, 4]. (3) Integrating the typical C technology
stack into a managed environment, such as .NET, necessitates extra
workarounds. Therefore, GPU parallelization is unfortunately often
perceived as too difficult, too costly and offering only a marginal
benefit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CONF ’yy, Month d—d, 20yy, City, ST, Country.

Copyright © 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Several cross-platform frameworks support GPU parallel pro-
gramming in managed runtimes, such as in Java [6, 7] or .NET
[5, 8, 9]. The programming abstractions, however, essentially re-
main at the same low level of CUDA or OpenCL. More elegant in-
tegrations have been proposed but they usually lack generality, e.g.
a LINQ-integration [10, 11] only supports a limited set of query
operations. Dataflow programming models for GPU are more gen-
eral: Xcelerit [12], PTask [13], and FastFlow [14] follow this ap-
proach but have the drawback that programmers typically have to
implement custom nodes since the model has no or only fixed pre-
defined operations. This is where more low-level and tedious pro-
gramming is again involved. We also believe that substantial bene-
fits can be gained if dataflow would become more reactive, i.e. fully
asynchronous and ready to process sequences of inputs. For a more
detailed analysis, see the discussion of related work in Section 4.

Our goal is to radically simplify GPU parallelization while still
retaining expressiveness and efficiency. For this reason, we have
developed Alea reactive dataflow, a programming model based on
.NET. A computation is described as data propagated through a
directed graph of operations. The propagation is asynchronous,
reactive and push-based, while operations are typically vector-
parallelizable and generic. Programmers can easily define com-
putations without writing GPU code.

The runtime system takes care of the efficient parallelization
on GPUs, by streaming operations, configuring launches and mini-
mizing copying between CPU and GPU memory. The runtime sys-
tem as well as the implementation of operations guarantee mem-
ory safety. Although we currently focus on GPUs, the model could
be equally applied to general heterogeneous distributed paralleliza-
tion.

The remainder of this paper is structured as follows. Section 2
introduces the programming model. Section 3 briefly outlines the
current runtime system. Section 4 discusses related works. Section
5 finally draws a conclusion.

2. Programming Model

Alea reactive dataflow programs are defined by connecting opera-
tions to form a directed graph. Computations are triggered by feed-
ing input to operations. This implies a chain of reactions: Opera-
tions execute asynchronously whenever sufficient input is present
and thereby produce output passed to subsequent operations. To
obtain results, output can be observed from any operation. In the

Input: Tuple<T, U>

Input: T[] Left: T[,] Right: T[]

Multiplication

Output: U[] Output: T[,] First: T Second: U

Figure 1. Three operations with input and output ports.

following subsections, we explain the elementary concepts of the
programming model, accompanied by two exemplary application
cases.

2.1 Operations

An operation represents a self-contained unit of calculation that
has a set of input ports and a set of output ports. A port denotes
a stream of data of a defined type. The stream can be infinite with
data arriving in arbitrary intervals. When data is present at a defined
set or subset of the input ports, the operation consumes this data as
input, performs a calculation to produce data as output for a set
or subset output ports. Input is processed in the order as it arrives,
triggering output in the corresponding order, i.e. later input cannot
result in earlier output. However, data can arrive at each port at
different time intervals; they are not mutually synchronized.

Figure 1 depicts operations, with input ports at the top border
and output ports at the bottom border. Each port is specified with
a name and the type of the data. An operation is an instance
of a particular class, implementing the operation. The operation
determines which input ports are required to trigger a calculation,
e.g. Multiplication requires data at both input ports to trigger.
Analogously, the operation also defines to which output ports data
is passed, e.g. Splitter yields data at both output ports for each
input.

Operations can feature multiple implementations for different
processor architectures, such as GPUs or CPUs, see Section 3. To
be suited for GPUs, operations typically implement a massively
vector-parallel (SIMD) calculation per input, e.g. Map transforms
an array of elements. Many operations are generic, i.e. only pro-
vide partial implementation skeleton to be completed by a dele-
gate/lambda at construction time, e.g. the element-wise map func-
tion delegate of the Map operation. This enables relatively high ex-
pressiveness despite a fixed set of prefabricated operation classes.
Internally, operations can be stateless or stateful, i.e. work with or
without a state that is stored between executions.

2.2 Graphs

Operations can be interconnected to form a graph. The output port
of a preceding operation can be connected to one or multiple input
ports of a succeeding operation, provided that the ports have the
same type. Whenever data is passed to an output port, the data
becomes available at all connected input ports. Multiple output
ports may be also connect to the same input port, if the types match,
using an arbitrary order to merge the data of multiple output ports
into a common input port.

Figure 2 outlines a graph for a Monte Carlo Pi approximation.
Figure 3 shows a graph for the iterative computation of the steady
state in a Markov chain, based on the iterative formula b; 11 = Ab;
until b;11 = b;. Splitter and Merger are used to synchronize
A and b input, in the case of concurrent processing of multiple
Markov chain inputs.

Passing is asynchronous, i.e. an operation can produce data to
an output port, without awaiting the consumption of the data by any
other connected operations. Operations adhere to the principle that
passed data is immutable. Data can thus be passed by copying or by
referencing. If an arbitrary merge order is inappropriate, dedicated

var random = new Random<float>();
Random var pairing = new Pairing<float>();
var map = new Map(p =>

p.X * p. X+ p.Y *p.¥Y<=1

21 :0);
Pairing var average = new Average<int>();
random.Output.ConnectTo(pairing.Input);
pairing.Output.ConnectTo(map.Input);
map.Output.ConnectTo(average.Input);

average.Output.OnReceive(x =>
Console.WriteLine(x * 4));

random.Input.Send(1000);
random.Input.Send(1000000);

S

Figure 2. Monte Carlo Pi approximation dataflow graph.

/
(A bi) var source = new Splitter

<Matrix, Vector>();
var mult = new Multiplication
<Matrix, Vector>();
var cmp = new Predicate<Vector>
((a, b) => Abs(a - b) > 1E-6);
new Merger<Matrix, Vector>();
new Condition<Vector>();

var next
var cond

Multiplication B

source.First.ConnectTo(mult.First);
source.Second.ConnectTo(mult.Second);
source.First.ConnectTo(next.First);
mult.Output.ConnectTo(next.Second);
mult.Output.ConnectTo(cmp.First);
source.Second.ConnectTo(cmp.Second);
next.Output.ConnectTo(cond.PassThrough);
cmp.Output.ConnectTo(cond.Criterion);
cond.True.ConnectTo(source.Input);

Merger Predicate

cond.False.OnReceive(Console.WriteLine);
N b source.Send(new Tuple(A, b0));

Figure 3. Markov chain steady state as dataflow graph.

operations may be used to join multiple data streams. Graphs can
have cyclic connections, such as for iterative or continuous compu-
tations (e.g. Figure 3). Ports can also have no connections: they may
be unused or serve for external sending or reception, as explained
in the next subsection.

2.3 Dataflow

A dataflow is the propagation of data through the graph. Data
can be sent to any input port. Sending is asynchronous, i.e. does
not block. Multiple data can also be sent at the same time to
the same input port, in which case no order is postulated for the
data. Conversely, data can also be received from any output port
by registering delegates that are asynchronously invoked whenever
output data is produced at that port. Figure 2 and 3 also demonstrate
how data is sent to input ports and received from output ports
(highlighted in red font).

The reception delegates are executed by arbitrary threads, i.e.
multiple output data can be processed concurrently. If multiple del-
egates are registered for an output port, all are invoked in arbitrary
order or possibly concurrently. Data streams require no explicit ter-
mination but represent a conceptually infinite sequence of data.

2.4 Short Notation

A shortcut fluent-style notation can be used for the graph and
dataflow definition, see Figure 4. The selection of input and output

var random = new Random<float>();
random
.Pairing()
Map(p => p.X * p.X + p.Y *pY<=1?1:0)
.Average()
.OnReceive(a => Console.WriteLine(a * 4));
random.Send(1000) ;
random. Send(1000000) ;

Figure 4. Short notation for the Monte Carlo Pi example.

port is thereby implicit if the operation has a single input or output
port, respectively.

3. Runtime System

The dataflow runtime support is realized by two components: a
scheduler and the internal implementations of operations.

Operations implement a function for determining when suffi-
cient input is available to trigger the calculation. Moreover, an op-
eration provides one or multiple mappings to defined processor
architectures, such as CPU and GPU. The GPU mapping resem-
bles the standard CUDA model [1], however type-safely integrated
into .NET. As for generic operations, the concrete delegate .NET
IL code is gathered and translated to CUDA code at runtime or at
compile-time, and eventually fused into the operation’s CUDA ker-
nel. The GPU mapping of an operation additionally defines a script
of specific malloc/launch commands as an execution plan to hap-
pen in the future. At the planning time, the script has only restricted
information about the data to be processed, i.e. only knows scalar
values and the sizes of input blocks to make decisions for optimal
kernel launch configurations. The CPU mapping can be directly ex-
ecuted by the NET TPL [15]. In contrast to GPU mappings, a CPU
implementation can be stateful, i.e. carry state over calculation by
defining their own CPU-side synchronization on that state.

Programmers can implement custom operations, by providing
the mapping for CPU and/or CUDA. This certainly requires more
expert knowledge in GPU parallelization. However, we aim to pro-
vide a good base functionality supplying a well-selected set of
generic operations, such that users usually do not need to imple-
ment custom operations.

The scheduling is currently realized for hybrid CPU and single
GPU execution. For an input, the scheduler collects the largest
non-cyclic sub-graph of GPU-implemented operations to start these
operation in one stream. Memory copying is only necessary and
performed for transitions between CPU and GPU operations or
when the host program sends data to or receives data from GPU
operations. As transmitted data must be immutable, it can be shared
or copied. Deallocation of GPU memory is automatically managed
by the scheduler and not within the operation implementations. The
scheduler disposes GPU memory blocks when no longer used by a
running operation or contained in a data stream.

The dataflow system uses Alea cuBase [8] as the underlying en-
gine for the CUDA runtime and compilation support within .NET.

4. Related Work

Our model is strongly inspired by Rx.NET [16, 17] and TPL
dataflow [18]. These models are however not designed for GPUs,
as the blocks are generally unsuited for vector parallelization. A
further significant difference is that we support multiple input and
output ports. This permits the design of arbitrary well-controlled
mergers or splitters. In the TPL dataflow for example, splitting and
merging can only be controlled to a limited degree, by filtering
messages or using batch/join blocks with specific merge pattern.
We also abandon the concept of explicit termination of a stream.

Several frameworks improve cross-platform GPU paralleliza-
tion, e.g. for Java [6, 7] or .NET [5, 8, 9]. However, the majority
essentially exposes the same low-level programming model. Pro-
grammers are still bothered by technical artefacts, such as writing
SIMD-kernels, copying between CPU and GPU memory, wrapping
code in special classes, dealing with launch configurations, thread
block ids etc. Notable simplification are achieved by more abstract
models, such as translating .NET LINQ expressions to GPU paral-
lel code [10, 11]. However, the expressiveness of this approach is
inherently limited by the fixed set of LINQ query functions, basi-
cally being projection, mapping, filtering, ordering, and grouping.

Dataflow models allow the composition of parallel operations
by minimizing memory transfers. Xcelerit [12], PTask [13], and
FastFlow [14] are all based on this paradigm, to enable heteroge-
neous parallel computing in particular also for GPUs. These system
still do not go as far as desired: A created graph essentially serves
a single computation and/or synchronous invocation from the host
side limits concurrency. In combination with a reactive concept,
their practicability could be raised, i.e. by allowing the same graph
to asynchronously process a conceptually infinite sequence of in-
puts, sent in arbitrary intervals. In contrast to the aforementioned
systems, we also support generic operations, i.e. operations that im-
plement a partial algorithm skeleton and are completed by a user-
specific delegate/lambda/functor upon creation. This naturally re-
quires cross-compilation of host code to the GPU platform.

5. Conclusions

The Alea reactive dataflow programming model enables simple
but powerful GPU parallelization in .NET. Due to the descriptive
paradigm, programmers are liberated from writing explicit low-
level GPU code. This promotes fast and condensed program formu-
lation, while the scheduler enables efficient and memory-safe exe-
cution behind the scenes. The reactive push-based paradigm makes
the model particularly general, i.e. supports cycles, infinite stream
of input delivered in arbitrary intervals. Naturally, the usefulness of
the model stands and falls with the set of operations that is avail-
able. Generic operations provide a substantial step in this direction,
such that programmers usually do not need to implement custom
operations. Our work is still in progress: In the future, we plan to
enhance the scheduler for the support of multiple GPUs and cluster
distribution, as well as for further optimizations. Moreover, we aim
to continuously extend the generic operation catalogue.

Addendum

This research is funded by the Swiss National Commission of
Technology and Innovation (CTI), project number 16130.2. All
trademarks, trade names etc. are the property of their respective
owners.

References

[1] Nvidia Inc. CUDA C Programming Guide. Version 6.0, http://
docs.nvidia.com/cuda/cuda-c-programming-guide, accessed
2014-08-25.

[2] Khronos Group. The Open Standard for Parallel Programming of
Heterogeneous Systems. OpenCL 2.0, https://www.khronos.org/
opencl, accessed 2014-08-25.

[3] Microsoft Inc. C++ Accelerated Massive Parallelism (C++ AMP).
http://msdn.microsoft.com/en-us/library/hh265136.aspx,
accessed 2014-08-25.

[4] OpenACC. The OpenACC Application Programming Interface. Version
1.0, 2011, http://www.openacc.org, accessed 2014-08-25.

[S] Cudafy.NET. http://cudafy.codeplex.com, accessed 2014-08-25.

[6] P. C. Pratt-Szeliga, J. W. Fawcett, and Roy D. Welch. Rootbeer:
Seamlessly using GPUs from Java. IEEE 9th International Conference

on High Performance Computing and Communication 2012 & IEEE
14th International Conference on on Embedded Software and Systems
(HPCC-ICESS), 2012. IEEE, pp. 375-380, 2012.

[7] Y. Yonghong, M. Grossman, and V. Sarkar. JCUDA: A Programmer-
Friendly Interface for Accelerating Java Programs with CUDA. Euro-Par
2009 Parallel Processing. Springer, 887-899, 2009.

[8] QuanAlea Inc. Alea cuBase. https://www.quantalea.net, ac-
cessed 2014-08-25.

[9] G. Cocco. FSCL Compiler. http://fscl.github.io/FSCL.
Compiler, accessed 2014-08-25.

[10] Nessos, GPU LINQ. https://github.com/nessos/Gpuling,
accessed 2014-08-25.

[11] C. J. Rossbach, Y. Yu, J. Currey, J. P. Martin, and D. Fetterly.
Dandelion: A Compiler and Runtime for Heterogeneous Systems.
In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP’13). Nov. 2013.

[12] J. Lotze, P. D. Sutton, and H. Lahlou. Many-Core Accelerated LIBOR
Swaption Portfolio Pricing. In Companion IEEE High Performance

Computing, Networking, Storage and Analysis (SCC), 2012.

[13] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: Operating System Abstractions to Manage GPUs as Compute
Devices. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11), Oct. 2011.

[14] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati.
Targeting Distributed Systems in FastFlow. In Euro-Par 2012: Parallel
Processing Workshops (pp. 47-56). Springer, Jan. 2013.

[15] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task
Parallel Library. In Proceedings of the 24th ACM SIGPLAN Conference
on Object-Oriented Programming Systems Languages and Applications
(OOPSLA’09), Oct. 2009.

[16] Microsoft Inc. The Reactive Extensions (Rx.NET), http://msdn.
microsoft.com/en-us/data/gg577609.aspx, accessed 2014-08-
25.

[17] E. Meijer. Your Mouse is a Database. ACM Queue 10(3):20-34,
March 2012.

[18] S. Toub. Introduction to TPL Dataflow. Microsoft Inc, Apr. 2011.

