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Abstract
The Alea reactive dataflow system represents a general, efficient,
and memory-safe model for homogeneous programming of het-
erogeneous platforms. Programmers can describe computations as
asynchronous dataflow graphs built from generic prefabricated or
custom operations. The system is based on the .NET runtime sys-
tem and allows to seamlessly target both CPU and GPU execut-
ing operations on either platform including multi-GPU scheduling.
Language embedded GPU kernels are cross-compiled from .NET
IL to GPU code. The dataflow runtime system takes care of effi-
cient lock-free data management including garbage collection and
performs just-in-time optimization of the dataflow graph.

1. Introduction
GPUs are designed for massive parallelization promising tremen-
dous performance. It is however very challenging for programmers
to make use of the available processing power due to the single in-
struction multiple threads (SIMT) architecture and due to various
architecture intrinsics directly passed to programmers1. The stan-
dards such as CUDA and OpenCL, as well as most other frame-
works, require the formulation of the algorithm in this model. The
process of developing efficient GPU kernels normally takes longer
and results in code that is harder to understand than its correspond-
ing sequential version. For these reasons, performance-critical ap-
plications are the only ones justifying the extra complexity. Our
goal is to substantially simplify GPU programming in order to
lower this cost and, thereby, to extend the range of applications
that can benefit from superior GPU performance.

The use of dataflow models to express calculations that run con-
currently on heterogeneous hardware is gaining more importance –
a statement also backed by Google’s very recent release of Tensor-

∗ This research is funded by the Swiss National Commission of Technology
and Innovation (CTI), project number 16130.2. All trademarks, trade names
etc. are the property of their respective owners.
1 The programmer needs to explicitly optimize the use of on-chip memory,
warp-thread-divergence and access alignment to GPU global memory (co-
alescing) to achieve highly performing code. He also needs to explicitly
move data from host to GPU device and vice versa [13].
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Flow [11]. We understand a dataflow as an asynchronous reactive
process in which data is propagated through a graph of operations
along the connections triggering the processing of the data at each
operation. This programming model is general and equally suitable
for both fine-grained and coarse-grained operations; fine-grained
use is only limited by the overhead of the runtime system. By pro-
viding a library of generic parameterizable dataflow operation im-
plementations for both GPU and CPU, programmers can readily
write a wide range of applications on this abstraction level. In ad-
dition, there is the possibility to implement custom operations for
very specific problems, offering the same possibilities as CUDA
C [19] or other cross-platform frameworks in managed runtimes
[1, 2, 4, 5, 10, 33, 46]. Moreover, custom operations can easily
wrap other GPU libraries. In the future, the model could also be
applied to other technologies, e.g., to FPGAs or to heterogeneous
distributed systems.

Alea reactive dataflow provides classes to model dataflows ac-
companied by a runtime system that takes care of the efficient exe-
cution. Alea reactive dataflow implements this programming model
based on the .NET framework. The evaluation of the system shows
that the overhead for dataflow orchestration and memory manage-
ment is very low. The performance of the generated kernels is in
the same range as the corresponding CUDA C version.

Alea reactive dataflow exceeds similar systems [3, 6, 11, 12, 22,
28, 34, 35, 40, 42–44] in its versatility and convenience (except for
distributed evaluation). It allows cyclic dataflows, supports flexi-
ble dataflow synchronization, supports custom operations, gener-
ics and lambdas, i.e., it is fully extensible, provides automatic
and minimal data movement, performs garbage collection on the
GPU, avoids unnecessary GPU synchronization and supports seam-
less heterogeneous computation on the CPU platform and multiple
GPUs. In addition, it offers the possibility of just-in-time optimiza-
tion of the operation graph for GPU execution. Both the construc-
tion of operation graphs and custom operation implementations can
be elegantly programmed in a .NET language, e.g., C#. The sum of
these features facilitate its ease of use and assist in producing high-
performance solutions. The related work section provides a more
systematic discussion.

We introduced the Alea reactive dataflow programming model
on a conceptual level in [7]. This paper augments and complements
that paper with (1) a more comprehensive description of the pro-
gramming model including execution semantics, (2) the description
of the runtime system design including optimizations, and (3) the
report on the experimental evaluation of the system. The remainder
of this paper is structured as follows: Section 2 elaborates on the
programming model. Section 3 describes the runtime system. Sec-
tion 4 describes how to extend the system. Section 5 presents an
experimental evaluation of the system with artificial tests and a re-
alistic application. Section 6 discusses related works, while section
7 draws a conclusion.
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Figure 1. Graphic representation of operations
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Figure 2. Operation graph for a Markov chain calculation step

2. Programming Model
2.1 Operations and Graph
An operation implements a function, of one or more parameters
and one or more results. Operations can feature function imple-
mentations for CPU and/or GPU. An operation interacts via in-
put ports representing the parameters of the function and output
ports representing the results of function applications. Each port
defines the type of the input it consumes or produces, ports can be
parametrized with generic types. Figure 1 depicts operations illus-
trated with rounded boxes, input ports with square boxes at the top
border and output ports at the bottom border. The ports are anno-
tated with their data type. The operation Splitter for example,
takes a tuple as input and produces both components at separate
output ports; it is defined as follows2.

class Splitter<T1, T2> : Operation
{
InputPort <Tuple<T1, T2>> Input
{ get; private set; }

OutputPort <T1> First { get; private set; }
OutputPort <T2> Second { get; private set; }

}

The Map operation is defined analogously; in addition, it takes
a lambda-function as argument in the constructor that is applied to
the input. Operations can be connected together to form a directed
graph. A particular instance of a graph is created by instantiating
operations and by connecting output ports to input ports of match-
ing type. The operations together with the topology determine the
graph’s composed functionality. There are no restrictions on sup-
ported topologies: single output ports can be connected to multiple
input ports, multiple output ports can be connected to a single in-
put port; input as well as output ports can also remain unconnected.
Graphs can contain cycles. Figure 2 illustrates one Markov chain
calculation step. The Merger is the inverse of the Splitter op-
eration and MatrixVectorProduct calculates the matrix-vector
product of the inputs. The graph for the iteration phase can be con-
structed as follows.

var splitter =

2 Code is denoted in the C# language; non-private visibility modifiers are
omitted.

Table 1. Standard Operation Catalog
Category Operations

Controlflow Merger, Predicate, Splitter,
Approximator, Turnout

Data Manipulation Map, MapCyclic, MapValue,
MapColToMatrix, MatrixMap,
MatrixColumnExtract,
MatrixSumColumns,
MatrixTranspose, Reduce,
ReduceBy, Scan

Mathematical / Statistical CartesianProduct, Convolution,
MatrixProduct, MatrixVectorProduct,
ScalarProduct, Random

Convenience / Performance Average, MatrixSum

new Splitter<float[,], float[]>();
var mvp = new MatrixVectorProduct <float >();
var merger = new Merger<float[,], float[]>();

splitter.First.ConnectTo(mvp.Left);
splitter.First.ConnectTo(merger.First);
splitter.Second.ConnectTo(mvp.Right);
mvp.Output.ConnectTo(merger.Second);

The framework provides a catalog of prefabricated vector-
parallel or control-flow operations summarized in table 1. All oper-
ations are implemented for both CPU and GPU. Many operations
are generic, i.e. only provide a partial implementation skeleton
to be completed by a delegate/lambda at construction time. The
lambda is then applied to the data in parallel, e.g., Map applies
a side-effect-free function to each element of a single- or multi-
dimensional array. The library contains different versions of Map
for one to three inputs. This enables relatively high expressiveness
with a small set of operations.

2.2 Streams and Dataflow
An operation graph can be executed as a dataflow. The execution
is triggered by sending data into operation input ports. When an
operation has received all required data, it executes by applying the
operation’s function to the supplied data, producing the resulting
data at its output ports. Not all operations require data at all input
ports; operations can define per execution from which ports they
require input, e.g., require only one input at any port, one input at a
particular port and use input from other ports if available or ignore
other ports, and so on.

At runtime, two connected operation ports define a stream of
data starting at the output and ending at the connected input port.
A stream is an indefinite sequence of data of the ports’ type with
items arriving in arbitrary intervals. If multiple output ports are con-
nected to a single input port, the streams are merged with an unde-
termined order. If a single output port is connected to multiple input
ports, each item is propagated to all associated streams. Streams
connected to a cycle lead to iterative and potentially infinitely run-
ning dataflows if not checked by appropriate control operations.
Data arriving at unconnected output ports is discarded.

Operations themselves do not produce any side effects, but their
output ports can pass results to previously registered reception
delegates. The following code illustrates this registration for the
Markov chain example. Data passed to reception delegates can be
interpreted as results of the entire dataflow calculation.

merger.Output.OnReceive(result => ...);

Graphs must be fully constructed including the registration of
delegates before they can be used. This prevents concurrency issues
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Figure 3. The dataflow for the Markov chain calculation step
(from left to right)
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with graphs changing during execution. Also, data may only be sent
into unconnected input ports or internal ports connected to control-
flow operations to leave room for structural optimization of the
graph. The following code illustrates how to invoke the Markov
calculation step.

splitter.Input.Send(
new Tuple<float[,], float[]>(M, v));

Figure 3 illustrates the evaluation process of the Markov chain
dataflow. A Markov chain is described by a state transition prob-
ability matrix M and a vector v containing the current probability
of each state. Matrices M and vector v arrive at the splitter op-
eration that propagates M and v separately. When M and v arrive
at the mvp operation, it calculates the product and yields v’. Since
the merger requires all inputs, M is pending until v’ arrives a the
merger operation that finally produces the resulting tuple contain-
ing the matrix M and v’, the new probability of each state. The
tuple is passed to the reception delegate that can, e.g., display the
new state probabilities to the user.

The Approximator operation can be used to approximate a
fixed-point of an iteratively calculated value until a defined thresh-
old (defined at construction of the operation) is reached. It can be
used to complete the Markov chain shown in figure 4 in order to
approximate the steady state probabilities. The steady state calcu-
lation is triggered by sending M and the initial v into the left input
port of the Approximator operation resulting in a repeated execu-
tion of the Markov chain step until the threshold is reached and the
Approximator operation routes the data out of the cycle.

The description of the evaluation process illustrates that it is
data driven and data is propagated through the graph as soon as
possible, only pending at operations until they have all required
input. The process continues as long as there are operations that can

execute. Of course, graphs must be designed such that the dataflows
terminate with all data being processed and without pending data.
The sending (production) and reception (consumption) of data is
asynchronous on dataflow as well as on operation level, a so-called
reactive execution.

It is supported to concurrently provision dataflows with multiple
input sets, resulting in multiple sets of associated values being
pushed through the graph. These sets must remain strictly separated
during the entire process to ensure correct execution. Moreover,
it must be possible to relate the output sets to the corresponding
input sets. The runtime system ensures that the sequential order
of data along any path through the graph is preserved. In order to
leverage this to the level of entire dataflows, the programmer has
the responsibility to select the topology such that the separation of
the sets remains intact when joining paths (as is is the case in the
Markov chain example).

Data passed between operations must be immutable. All pre-
fabricated operation implementations do not modify input data but
instead produce new output data; all custom operations are required
to do this as well. The evaluation engine can therefore freely opti-
mize data propagation by using copying or referencing.

The execution on heterogeneous hardware remains transparent.
The operations’ function can be implemented for the CPU and/or
GPU platform. Each operation can thereby define the strategy for
the selection of the platform at runtime based on the availability
of data on the two platforms. The runtime system automatically
performs all necessary data transfers to ensure data availability.

Memory management on CPU (host side) is performed by the
.NET runtime system; however, this does not apply to data residing
in GPU memory. The dataflow runtime system takes care of dis-
posing unreachable memory and kernels on the GPU, providing a
uniform model to the programmer in this regard.

3. Runtime System Implementation
3.1 Dataflow Execution
The architecture of the runtime system is driven by the reactive
execution concept, the needs of the data propagation and the GPU
garbage collection.

The runtime system builds up a data stream infrastructure for
each dataflow holding all the data that will be propagated within
it. Streams are realized by FIFO queues associated with each op-
eration input port. The data propagation structure can be used to
achieve the reactive execution. Each time data is enqueued at an in-
put port, the readiness of the owning operation is checked. In case
it is ready, data is dequeued from all used streams and the execu-
tion platform is determined. The actual execution of the operations’
implementation is delegated to .NET TPL [21] in case of the CPU,
and to the GPU scheduler in case of GPU platform described in the
next section.

The operation implementation is supplied with access to the de-
queued data, which it can, but must not consume. The runtime sys-
tem ensures that all required data for a particular operation exe-
cution is present on the selected platform. For this purpose, each
piece of data is encapsulated and can transparently reside in the
host and/or GPU memory. The framework applies lazy copying of
the data to minimize work. In case of the CPU platform, the im-
plementation performs the actual calculation; in case of the GPU
platform, it generates a sequence of GPU kernel launches perform-
ing the calculation. During this processing, the implementation can
produce new data for output ports that is subsequently propagated
to all connected streams.

The runtime system performs garbage collection on the GPU
platform. GPU garbage collection can be safely performed by a
reference counting scheme in case of dataflows. Reference count-
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Figure 5. Qualitative timing and dependency diagram for an exem-
plary command sequence with two data transfers and two kernels

ing is applied to all data used in the dataflow. The engine counts
the usages for each device memory block, i.e. the number of op-
erations where it is currently in use plus the number of streams in
which it is buffered. When the counter becomes zero, the block
is automatically freed on the GPU. In contrast to ordinary refer-
ence counting implementations, the mechanism is sound since the
usage counting is acyclic: blocks do not carry references to other
blocks, but only operations and streams may reference blocks. The
potentially cyclic dataflows themselves are managed by the .NET
garbage collector that can dispose cyclically referencing objects.
Since the runtime system has the right to move data from host to
device memory, the reference counting scheme has to be applied
irrespective of the current location of the data.

The data stream infrastructure is associated with instances of
the operation graph exclusively via weak memory references in
order not to block the garbage collection of the graph and to enable
the garbage collection of the data propagation infrastructure which
is distinct from the data within the streams managed with the
reference counting scheme.

The programming model requires that the sequential order of
data along any path through the graph is preserved. The runtime
system ensures this by using thread-safe and lock-free queues for
the streams, and by not allowing the concurrent execution of the
same operation instance using atomic counters. This implies that
data sets belonging to different calculations cannot overtake each
other which might be beneficial in some cases. Our design avoids
this complexity having the advantage of simpler and, with that,
faster scheduling decisions.

3.2 GPU Scheduling
Since the GPU does not support time-slicing as the CPU does,
GPU commands have to be serialized. Also, there is a significant
delay in the communication to GPU devices. Each GPU has a
command pipeline that supports hiding this delay. The pipeline can
be filled with kernel launch and data transfer commands. The GPU
offers additional device synchronization commands; calling these
methods exposes the communication latency. The GPU scheduler
is designed not use these commands, but instead performing all
kernel calls in a dataflow consistent order. As an exception in case
of device-to-device transfers, data dependencies have to be ensured
by explicit synchronization.

Consider an exemplary dataflow consisting of a matrix-vector-
product followed by a map operation with the qualitative execution
timing shown in figure 5. The runtime launches two initial host-
to-device data transfers, followed by two kernel launches and a
final device-to-host data transfer to run this dataflow. The execution
of each command goes through the phases invocation, pending
and execution. The pending and execution phase are happening on
the GPU device. The asynchronous behavior on GPU command
level transcends to the dataflow operation level. So, each operation
scheduled on the GPU platform goes through the same phases as
the individual commands. Thus, single operations or subgraphs can
be completely scheduled, but not have started execution. The GPU
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Figure 6. Worst-case scenario for data affine scheduling on opera-
tion level

command pipeline effectively enables ahead of time scheduling
of operations and with that hiding the overhead of the dataflow
runtime. This is only limited by operations executing on CPU
requiring input to be present in the host memory and inter-device
data transfers.

3.3 Multi-GPU Support
There is a recent trend towards using multiple GPU devices. Natu-
rally, the runtime system should be able to distribute the execution
of the GPU kernels to these devices. GPU devices require the data
to be present locally, the resulting data transfers between GPUs do
however take a relatively long time to complete and limit ahead of
time scheduling. They should therefore be minimized, which can
be done by scheduling dependent kernels on the same GPU device.
The GPU scheduler manages the pool of available GPU devices
and can be configured to use one of the two following pragmatic
strategies manage this pool.

The first strategy schedules entire dataflows to GPUs which
means that all operations of a particular dataflow will always ex-
ecute on the same GPU device. This has the advantage that there
are no inter-device data transfers happening. Ideally, each dataflow
is executing exclusively on its GPU device, but if there are more
dataflows that GPUs, execution of single operations of different
dataflows are interleaved on a common GPU device. This strategy
has the disadvantage that a program consisting of a single dataflow
graph cannot make use of multiple GPU devices; or similarly, in
a scenario with multiple dataflows, there can be significant load
imbalance. Nevertheless, there is a large class of applications pro-
cessing many independent problem instances at a large granularity
allowing for parallel execution by instantiating multiple copies of
the dataflow and taking care of concurrent provisioning.

The offered alternative is data affine scheduling on operation
level, which schedules operations per execution on the GPUs in
an ”on-line” approach. The GPU is selected such that the amount
of data that must be transferred for the operation’s arguments is
minimized. In case of equal transfer cost, the GPU is selected
with the smallest expected waiting time. The advantage of this
method is that the system automatically uses all available GPUs and
can perform adaptive load balancing. This strategy can distribute
different sets of associated values to different GPUs. However,
it can also, in the worst case, lead to performance degradation
compared to single GPU execution: Consider the repeated dataflow
shown in figure 6. Operations on the left will always be executed
on one GPU and operations the right hand side always on another
GPU. This can happen if the outputs of the operations at the top
have the same size resulting in the second priority scheduling
criteria to be applied: as soon as a kernel is scheduled on one GPU,
it has a larger expected waiting than the other GPU, which causes
the next kernel to be scheduled on the other GPU. This leads to a
repeated ping-pong of data transfers that might take more time than
merely executing the kernels on a single GPU.
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Figure 8. Application of the fusion to an exemplary graph. The
connections drawn as red dotted arrows need to be cut open in the
left graph and reconnected to the fused operation in the right graph.

3.4 Operation Fusion
Most GPU kernels follow the general pattern load data from GPU
global memory, process and store it. If the process step is not
computationally intensive per loaded and stored data item, kernels
of this type are memory-bound. Since loading and storing of data
items is inevitable, the only way to improve performance is to do
more in the processing step. Applied to the dataflow model, this
requires combining multiple operations into a single operation such
that the loading and storing is performed once for the combined
calculation. One way to achieve this, is to provide a library offering
a large number of operations for composed calculations such as,
e.g., cuBLAS [18]. This is not ideal with respect to good design
because of too many special case operations, i.e. lack of cohesion.
A better approach is to perform this optimization behind the scenes
and provide the programmer a small set of powerful operations.

Since the graph must be fully constructed before it is used, the
runtime system is free to modify and optimize all operations and
connections in-between ports. This can be performed just-in-time
at the first sending of data into a particular graph.

Combining operations implies combining CUDA kernels known
as kernel fusion. Research indicates that analyzing and fusing ker-
nels in full generality is at least a NP-complete problem [45].
Therefore, Alea reactive dataflow pragmatically enables the op-
eration library to perform the fusion of its operations. An operation
library can define any number of fusers that enable the runtime
system to fuse a particular operation graph; an exemplary matrix-
transposed-product fuser is shown in figure 7 and an exemplary
application in figure 8. The runtime system needs to perform the
following tasks in order to enable this: (1) discover the fusers pro-
vided by the library, (2) discover when a graph is used as dataflow
for the first time, (3) analyze each new graph and find all fusable
subgraphs, (4) create the fused operations and (5) replace the sub-
graphs with the new operations by rewiring.

4. Extension of the Operation Catalog
The operation catalog can be extended seamlessly. Prefabricated
operations only use features that are also available for building
custom operations; however, the GPU implementation of opera-
tions requires advanced knowledge of the GPU architecture as men-
tioned in section 1.

4.1 Operation Implementation
Both, the prefabricated operations and custom operations, are im-
plemented based on the same classes and interfaces. The operation
and port framework classes are purely declarative and do not con-
tain any runtime system logic.

The following code shows the implementation of the Matrix-
VectorProduct operation class. Each operation class needs to de-
rive from the abstract Operation base class. Each port is defined
as a property of the new class having types based on the two frame-
work classes InputPort<> and InputPort<>. The constructor
must initialize the port properties and set the Implementations
property of the Operation base class providing the implementa-
tion of the operation for the different supported platforms.

class MatrixVectorProduct <T> : Operation
{
// declare the operations featured ports
InputPort <T[,]> Left { get; private set; }
InputPort <T[]> Right { get; private set; }
OutputPort <T[]> Output { get; private set; }

internal MatrixVectorProduct()
{
// initialize ports
Left = new InputPort <T[,]>(this);
Right = new InputPort <T[]>(this);
Output = new OutputPort <T[]>(this);

// define supported implementations
Implementations = new[] {
new CudaMatrixVectorProductImpl <T>(),
new CpuMatrixVectorProductImpl <T>()

};
}

}

There are two base framework classes, one for CPU and one
for GPU, to implement the platform-mapping of an operation. For
simplicity we continue the example with the Map operation. The
key piece is the Execute method that receives a script object
created by the dataflow framework functioning as interface to the
dataflow, i.e. allowing to consume and produce data by indicating
the respective operation port. Implementations can only consume
at most one piece of data from each input port per invocation and
can assume that it will be immediately available.

class CudaMapImplementation <TInput, TOutput>
: CudaImplementation <Map<TInput, TOutput>>

{
...

override void PlanExecution(
Map<TInput, TOutput> operation ,
CudaScript script)

{
TInput[] input;
input = script.Consume(operation.Input);
var output = new TOutput[input.Length];
script.Launch(new LaunchParam(...),
Map, input, output);

script.Produce(operation.Output, output);
}

}



The execution plan is built with limited information about the
data to be processed, i.e. scalar values and the sizes of input arrays,
to make decisions for optimal kernel launch configurations. This is
because the execution plan and the launch configuration are built
on the host, but the data resides on the device. It is thus not allowed
to read from or write to arrays. Obviously, to run efficiently on
GPUs, operations need to implement a massively vector-parallel
calculation per input, e.g., Map transforms an array of elements.

The GPU implementation also includes one or several kernels
written as .NET methods that are seamlessly integrated into .NET
resembling the standard CUDA C model. On a syntactic level, nor-
mal .NET types, in particular arrays, can be used as arrays instead
of low-level pointers. A special property of our model constitutes
the ability to used generics and invoke .NET delegates inside ker-
nels. The following code illustrates a simple CUDA kernel imple-
mented in C# applying the map delegate being an instance field to
an input array and storing the result in an output array.

void Map(int[] input, int[] output)
{
var start = blockIdx.x*blockDim.x+threadIdx.x;
var stride = gridDim.x*blockDim.x;
for (var i = start; i < output.Length;

i += stride) {
output[i] = _map(input[i]);

}
}

4.2 GPU Cross Compilation
We engage automatic kernel cross compilation from .NET CIL
(Common Intermediate Language) to the target CUDA PTX (port-
able executable). Apart from kernels, cross compilation needs to
include all methods/lambdas that the kernel may directly or indi-
rectly call. Non-recursive methods are in-lined by our compiler. We
impose certain restrictions on the translatable GPU code, i.e., ex-
ceptions, object references, object creation, IO code, unmanaged
code cannot be cross-compiled and yield an error. Kernels however
support all primitive types, struct-types, as well as access to closure
variables of lambdas and to static variables.

By default, cross compilation is triggered by the runtime system
on the first launch of a kernel. Alternatively, programmers may opt-
in for ahead-of-execution cross compilation. Of course, ahead-of-
execution entails certain restrictions, in particular that the callable
methods/lambdas can be statically inferred; otherwise, a fall-back
to runtime translation occurs. For performance improvements, we
cache generated target code and only recompile it when the host
code has changed (detected by a hash value of the binaries).

Architecturally, we realized the translation from CIL to CUDA
by the help of the LLVM [39] compiler framework and its specific
CUDA backend (NVVM [30]). During cross compilation, debug
information (source code locations and variable name mappings)
can be included into the generated PTX code.

5. Experimental Evaluation
We implemented a number of artificial tests and realistic sample ap-
plications to validate the programming model and the performance
of the entire system. We used the hardware as specified in table 2
for all evaluation purposes; the E5 does not use hyper-threading.

5.1 Performance of Micro Tests
We run micro tests to evaluate specific performance aspects of
the system. The first series of tests compares the wall time3 for

3 The measurement denotes the average wall time over 100 runs including
the time of a single initial host to device transfer and a single back transfer
for the GPU versions.

Table 2. Hardware used for performance evaluation
GeForce GTX Intel Xeon
TITAN Black E5-2609

Number of (multi-)processors 15 4
Number of threads 2880 4
Internal clock rate 0.98 GHz 2.4 GHz
Memory clock rate 3.5 GHz 3.2 GHz
Level 2 cache 1.5 MB 1 MB
Level 3 cache - 10 MB

Table 3. Micro benchmark results for arrays of floats (absolute
time of DFG1 and speedup relative to other setups). The measured
times for the data type int are practically the same; double arrays
take around 30% to 50% longer for both frameworks.

Benchmark DFG1 CUDA C
DFG1

DFC4
DFG1

DFG2
DFG1

Average 1.69 ms 1.12 11.6 0.56
Convolution 5.91 ms 1.03 37.0 0.51
Multiply Add 30.4 ms 0.81 400 0.51
Monte Carlo π 6.11 ms 1.06 5.3 0.57

Arith. Average - 1.01 - 0.54

a number of dataflows running with our kernel-cross-compilation
approach on a single GPU (DFG1) to C++ applications with the
same kernels written in Nvidia’s CUDA C, to .NET implementa-
tions running entirely on all 4 CPU cores (DFC4) and to itself us-
ing two GPUs (DFG2). The GPU kernels are modestly optimized
not exceeding 50 lines of code. Each benchmark is composed of
two basic operations implemented as single kernels and two simple
dataflows. The size of the inputs is 1,000,000 for one-dimensional
and 1,000 x 1,000 for two-dimensional arrays. Our test setup is de-
signed to not expose the extra overhead caused by .NET’s managed
heap slowing down host-to-device data transfers by almost a factor
of 2. The underlying assumption is that the benchmark dataflows
are part of a larger dataflow that is off-loaded to the GPU.

Table 3 shows the results of these comparisons. The comparison
to CUDA C suggests that simpler kernels perform slightly faster
while more involved kernels perform slightly slower, but overall in
the same range as implementations in CUDA C. The comparison
to pure CPU execution (DFC4) shows that GPUs can indeed out-
perform CPUs. If the task is compute-intensive and large enough to
saturate the GPU and hide the memory latency, the speedup is im-
mense – as it is the case for the matrix multiplication (factor 400).

The DFG2/DFG1 benchmark assesses the effectiveness of the
multi-GPU scheduling. For the DFG2 setup, we apply the GPU
assignment on dataflow graph level with one graph created per GPU
and concurrent provisioning, i.e. sending data in parallel into the
two dataflows. The input is split up such that the same amount of
numbers is calculated in total. An average speedup of 0.54 in the
table of course equals a 1.85 speedup of the dual over the single
GPU setup. It can be observed that fast running kernels or dataflows
composed thereof exhibit slight suboptimal scaling; this is due to
the circumstance that there is only half as much data to be processed
per dataflow exposing some serial overhead of the runtime system
and the test setup.

To evaluate the overhead of the dataflow scheduling, we created
an artificial dataflow building a binary tree consisting of 2’000
trivial operations propagating data from the leaves to the root.
Running the test in pure CPU mode shows that the orchestration of
the evaluation process and the reference counting used for garbage
collection consume around 5 microseconds per operation; the vast
majority of efficiently running GPU kernels take much more time
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Figure 9. Dataflow of the Monte Carlo option pricing sample
application

to execute. This micro test shows that the data management and
scheduling overhead of the dataflow runtime is negligible for GPU
applications and that the system can also be used for more fine-
grained CPU applications.

Overall, the performance evaluation shows that the dataflow
and the CUDA .NET runtime system incurs a small overhead over
direct implementation based on the CUDA C model.

5.2 Application Cases
We built two relatively complex applications to evaluate the
dataflow model. The first case originates from the financial domain
and applies the dataflow model to calculate the price of financial
options. Monte Carlo simulation is one of the problem solving
strategies that are very suitable to exploit data parallel hardware
architectures and a well-known and general approach to option
pricing. Option pricing with Monte Carlo simulation incrementally
approaches the mathematically exact price by generating random
stock price paths and applying the payoff formula at defined points
in time and discounting the payoffs back to the valuation date. Fig-
ure 9 shows the dataflow used for the option pricing application.
The PathGen and the Map operation are parametrized with the
annotated lambdas. The dataflow is cyclic reflecting the incremen-
tal approximation until the present value of the option is consid-
ered steady. PathGen is a custom operation performing the actual
generation of the stochastic price paths. In addition to calculating
thousands of price paths at a time, the dataflow also simultaneously
calculates a number of options with the same expiration date for
the same underlying to increase parallelism inside all operations.
Moreover, the dataflow supports the concurrent calculation of mul-
tiple sets of options by ensuring that all relevant information for
one set is kept together for each new iteration round.

The second sample application implements a machine learning
engine based on a fully connected neural network. Learning is an
iterative process training the network with a newly composed set of
data (epoch) until a defined recognition rate has been achieved. We
used the MNIST dataset [20] for the classification of hand-written
digits.

The engine applies the dataflow programming model on two
levels, on the coarse-grained level to formulate the entire prob-
lem solution and on a fine-grained level for the performance critical
parts being the training and evaluation phase of the neural network.
The implementation confines the neural network to GPU device
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Figure 10. Dataflow of the forward (on the left) and the backward
propagation (on the right) phase used for training neural networks
(the + and * signs annotated on the map operations denote the
lambda function)
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Figure 11. Fusing operations of the forward (on the left) and the
backward propagation dataflows (on the right)

memory during the entire process to avoid the prohibitive penalty
of repeatedly copying it from host to device and vice versa. Conse-
quently, all operations working with the neural network run on the
GPU platform and the others entirely on the host.

Figure 10 shows the forward and the backward propagation
dataflows for one layer of the neural network used in the training
and evaluation phase (with some variation). All operations are stan-
dard operations contained in the set of pre-fabricated operations.
Again, multiple digit images are trained simultaneously for more
data parallelism allowing the formulation of the critical product op-
erations as favorable matrix-matrix instead of matrix-vector prod-
ucts. In addition, we implemented all the applicable fusers for the
two dataflows to achieve the best possible speedup with our frame-
work and to assess the effectiveness of this optimization technique.
Figure 11 shows how the graph is optimized denoting operations
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GPU execution over a multi-threaded 4-core CPU execution for the
machine learning case with increasing numbers of hidden neurons

that are fused into single operations implementing the composed
functionality encircled with ellipses.

Both application cases have been implemented purely in C#.
The option pricing case is around 300 lines of code including a
custom GPU operation and the machine learning case is around
800 lines of productive code including 5 custom CPU operations
for the high-level dataflow.

5.3 Performance of the Application Cases
The performance evaluation of the applications determines the
speedup the GPU can achieve over pure multi-threaded CPU execu-
tion, assessing the suitability of the cases for GPU acceleration and
verifying that Alea reactive dataflow scales up to real application
cases.

Figure 12 shows the achieved speedup of the Monte Carlo op-
tion pricing application for different calculation parameters (option
maturities in days) and setups (single and dual GPU execution).
The speedup relative to pure CPU execution mainly comes from
the data-parallel stochastic stock price path generation. The dia-
gram shows that the dataflow executing on a single GPU can al-
ready achieve a decent speedup for medium to large pricing param-
eters. The diagram also shows that the scheduler scales well to dual
GPU execution.

Figure 13 shows the achieved speedup of the training phase of
the machine learning application. The problem size has been in-

creased artificially by increasing the number of hidden neurons.4

The speedup mainly comes from the matrix-products. The over-
head of copying the images of the handwritten digits from host to
device memory in combination with the inefficiency of GPU ker-
nels for small datasets results in a low speedup for small neural
networks. The comparison of the optimized versus the unoptimized
dataflow shows a speedup of around 30% largely independent of the
problem size.

Both graphs show that the problem needs to have a certain size
and with that enough data parallelism to allow the GPU to achieve
a significant speedup. When comparing the option pricing to the
machine learning speedup, it can be observed that the machine
learning case is dominated by the matrix multiplication achieving
an excellent speedup for large enough matrix sizes; the Monte
Carlo simulation conversely is fully data parallel, but the individual
GPU CUDA threads work is more complex and with that still, but
less suitable for the GPU architecture.

The two cases demonstrate that our system as a whole works
reliably with respect to, e.g., garbage collection or multi-threading
and can achieve good speedups for realistic applications.

6. Related Work
Our model can be classified as a flexible and accomplished varia-
tion of a data driven static dataflow model allowing multiple pieces
of data on arcs, non-strict evaluation and non-recursive but cyclic
graphs. Our model is targeted at homogeneous programming of het-
erogeneous platforms, specifically CPU and GPU.

The recent related works can be classified by programming
model into low-level and high-level focused models; the high-
level models can be further split up into pure dataflow, impera-
tive, hybrid-dataflow-imperative and functional as well as hybrid-
functional-imperative programming models.

Low-level GPU parallel programming frameworks, such as
CUDA [19] (with version 7 also supporting lambda functions)
OpenCL [14] are applied to implement the vast majority of the
frameworks. Several frameworks raise these imperative models into
managed runtime systems providing seamless integration into the
platform languages, for Java [33, 46] and for .NET [1, 2, 4, 5, 10].

Among the high-level programming models, pure dataflow
models gain increasing relevance for programming heterogeneous
parallel architectures, in particular for GPUs. PTask [34], Dan-
delion [35], Xcelerit [22], Hyperflow [44], FastFlow [3], FlowCL
[43], and GpuLinq [28] all employ a dataflow abstraction to express
GPU parallelization. The strength resides in the descriptiveness,
leaving the degrees of freedom for the runtime system to sched-
ule flexibly, minimize memory copying, and select among multiple
implementations or tune configurations per operation. As demon-
strated by TensorFlow, PTask, Dandelion, Xcerlerit and others, this
approach also enables seamless generalization towards distributed
parallelization on CPU/GPU clusters, a step we have not yet taken
for our system.

The reactive character of our model is inspired by Rx.NET
[17, 27] and the TPL dataflow [41], although these systems are only
suited for CPUs, not for GPUs because of lacking integration.

While still considering data dependencies, StarPU [6], XKaapi
[42], StarSs [40], and Harmony [12] remain more imperative than
the aforementioned pure dataflow models. These models promote
a notion of task parallelization, where tasks can be dispatched on
GPUs. Due to the additional task dependencies, the runtime system
cannot as freely optimize data management as in merely descrip-
tive dataflows. Data dependencies need to be inferred in Harmony,

4 This does not result in an improved recognition rate for this particular
learning problem, which is however not relevant from a performance per-
spective.



and annotated in the other frameworks of this type. In TensorFlow,
the use of control-dependencies is optional, but helpful for, e.g.,
for controlling peak memory usage. C++ AMP [16] and OpenACC
[32] take this approach further by remaining purely in the C++ pro-
gramming model. Whippletree [36] is an interesting and innova-
tive combination of a hybrid high-level and low-level approach in
the area of task based systems. It allows composing warp-, block-
and device-level tasks into so called mega-kernels performing fine-
grained scheduling of these tasks and is therefore better able to ex-
ploit sparse, scattered parallelism.

Google’s very recently released TensorFlow [11] is aimed at
large-scale (distributed) machine learning, but it can be considered
as a general-purpose programming model. It features control-edges
and stateful variable operations as optional elements. It can derive
a gradient-version of a dataflow graph which is frequently needed
in machine learning. TensorFlow features an elaborate cost model
to support distributed scheduling, which is however, due to its
greedy simulation heuristic, in principle not superior to on-the-fly
scheduling in case of local execution.

In the area of functional and multi-paradigm programming lan-
guages Firepile [31] allows targeting the GPU in Scala and the Alea
GPU development system [4] in .NET F#. Implementation of GPU
kernels is seamlessly integrated into the respective languages but
remains essentially imperatively formulated. Delite [8] is a frame-
work for parallelization of DSLs that can use Scala ASTs as their
base. GPU support is limited to a set of parallel execution pat-
terns such as Map, Reduce, ZipWith, and Scan for which the Delite
runtime generates optimized kernels and executes them in an op-
timized execution plan, a similar approach is taken by Rust [15]
which has an interesting concept of unique pointers to avoid con-
servative duplication of data. Nikola [25], Accelerate [9] and Ob-
sidian [38] allow targeting the GPU with array computations em-
bedded in Haskell. These frameworks apply a number of advanced
optimizations, including the composition of GPU kernels from the
embedded domain specific languages.

In the following, we highlight the features of Alea reactive
dataflow with respect to the most related works in the area of high-
level dataflow and imperative models.

Our scheduler uses the lazy copying approach, as described in
the PTask system, to minimize memory transfer between host and
GPU devices. In addition, the runtime system performs garbage
collection of blocks allocated on the GPU. This can only be per-
formed by dataflow and task based systems keeping track of data
dependencies.

Alea reactive dataflow supports cyclic graphs resulting in iter-
ative computation. This permits us to solve complex application
cases in one dataflow. TensorFlow, FastFlow, Hyperflow and Har-
mony also support feedback cycles.

We apply on-the-fly scheduling based on available data input
for operations, similar as in PTask, Dandelion and Hyperflow, but
without the possibility to define priorities. Alea reactive dataflow
is more general than all other systems with respect to dataflow
synchronization, allowing each operation to determine the set of
inputs it requires for the next execution. To the best of our knowl-
edge, there is no other system targeting GPUs, including imperative
and functional approaches that supports this. Moreover, our script
metaphor also permits ahead-of-time scheduling of sub-graphs in
one GPU stream.

Another distinction point of our system is the genericity: Op-
erations can be parameterized by generic types and lambda/func-
tions. This means that operations do not carry fix implementation
but their implementation is completed at instantiation time. This
requires cross-compilation of host program code at runtime, in our
case from .NET IL to GPU code. Most dataflow systems and GPU
libraries, such as Unbound [29], do not have that possibility with

the exception of Dandelion, FastFlow, GpuLinq and SkelCL [37].
In these frameworks, a reduce operation, for example, only offers
a fixed set of aggregator functions; otherwise, new custom oper-
ations need to be implemented. Dandelion, GpuLinq and SkelCL
are also limited to (directed acyclic) queries with a fixed opera-
tion repertoire [26]. In FastFlow and the Boost.Compute library
[23], GPU-feasible functions for operations need to be wrapped in
C macros due to the missing support for dynamic code reflection
under C/C++. However, strarting with version 7, CUDA supports
parameterizing kernels with lambdas, and as a result, the support
for this is expected to grow.

Finally, in the area of optimization for dataflow execution,
Helium [24] follows a compelling approach to kernel fusion of
OpenCL programs. Helium intercepts OpenCL function calls to
build a dependency graph of kernel launches and data transfers. He-
lium builds up the graph until the host program requires the results.
At this point, the graph is analyzed and optimized. Optimizations
include kernel fusion, task parallelization and code specialization.
However, this elegant approach has drawbacks as well: The com-
plexity of the kernels that can be fused is limited, e.g., a matrix
transpose kernel cannot be fused automatically with a matrix mul-
tiply kernel. Also, delaying GPU command invocation exposes the
host-to-device communication delay and even increases it because
the graph analysis and kernel fusion is performed during this crit-
ical time window that is relevant especially for applications with
relatively short running kernels. Alea reactive dataflow, in contrast,
can be extended with kernel fusion methods that include know-
how about the particular kernels to be fused and interferes much
less with the host-to-device communication timing. To the best of
our knowledge, there is no other system that applies this framework
approach.

A high-level description of the Alea reactive dataflow program-
ming model has been previously presented in [7] – however without
implementation details and without experimental results.

7. Conclusions
The Alea reactive dataflow system establishes a high-level dataflow
programming model for simple yet efficient GPU parallelization.
It proves to be particularly powerful because of its asynchronous
nature that supports cyclic and iterative computation as well as
its genericity where operations can be parameterized by lambda-
functions. Moreover, it offers a seamless and clean extension mech-
anism of the operation catalog.

We have built an efficient lock-free runtime system based on the
.NET framework that takes care of orchestrating kernel launches
and efficient data management, including GPU garbage collection.
Its clean design allows the programmer to focus on the application
problem and separate concerns. The performance evaluation con-
firms that the systems runs robustly and efficiently and can achieve
high speedups on single and multiple GPUs with only a low perfor-
mance overhead compared to direct imperative GPU programming.
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