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Abstract

Composita is a highly concurrent system built
around the concept of self-contained components inter-
acting with each other via channels through interfaces.
This thesis ports the original Composita language im-
plementation to a serverless web-application by recre-
ating the compiler and runtime system in TypeScript
and making it publicly available on the internet. This
allows people interested in the language to play with,
and quickly get a feeling for the language using any de-
vice with a modern browser installed.

The implemented compiler consists of a lexer,
parser, checker, and code generator. The result-
ing intermediate language representation is then con-
sumed by the runtime that handles code interpreta-
tion, component communication, and the system’s con-
currency. Communication handling and concurrency
posed the biggest architectural challenges, due to the
single threaded JavaScript environment.

Language modernization has been explored but is yet
to be implemented. Modernization demands more than
just a reimplementation hosted in a modern language,
but also changes to the language itself. This thesis pro-
poses several ideas to improve the syntax and semantics
of the language, to make it more appealing to an audi-
ence already familiar with more modern languages like
TypeScript, Kotlin or Swift.

1. Introduction

Composita [1] as a system is built around the idea
of having components communicate with each other
via channels established through the defined interfaces.
The majority of the original work was done during Dr.

Luc Bläser’s doctorate. In the scope of his thesis not
only the language had been designed and implemented
but also a runtime and a kernel had been written to
support it. This implementation was done using the
Oberon [2] programming language and was made avail-
able to the public by the means of a virtual machine
and a bootable optical disc image. These results lay
the foundation for this paper and explain the various
concepts of Composita in depth.

The goal of this thesis is to take the original Com-
posita programming language and make it available to
a broader audience. This is achieved by two primary
means. Firstly, the current dependence on a virtual
machine or booting the image on a x86 system [3] is
to be replaced with a new compiler and a runtime,
that can be deployed as a serverless web-application [4],
meaning nothing more than a modern web browser is
required to write code in Composita. Secondly, changes
to the Composita language are proposed, taking inspi-
rations from currently popular programming languages
like TypeScript [5], Kotlin [6] or Swift [7].

2. Revisiting Composita

Composita is a system mainly used as a research
subject, seeing little development in the recent years.
The core idea behind the system and the correspond-
ing language with the same name was to get rid of
pointers as a language feature [8, 9], most prominently
seen in languages like C and its derivatives. This idea
also applies to languages using references as a pointer
replacement, for example Java [10].

The Composita language’s main building blocks are
interfaces and components. Components offer and re-
quire interfaces, the latter must be fulfilled before it
becomes fully operational. Code listing 1 shows a com-
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Figure 1: UML [11] notation of a component
HelloWorld found in listing 1

ponent requiring the World interfaces to be connected
and offers the Hello interfaces to other components.

1 COMPONENT HelloWorld OFFERS Hello

REQUIRES World;

2 IMPLEMENTATION Hello;

3 (* ... *)

4 END Hello;

5 END HelloWorld;

Listing 1: HelloWorld Component offers the Hello

and requires the World interface

Figure 1 illustrates listing 1 using the UML [11] no-
tation. Each offered interface must either be im-
plemented directly using an IMPLEMENTATION block,
or be redirected to an inner component. The of-
fered and required interfaces further define the com-
ponent’s type, allowing for generic ANY type decla-
rations. Listing 2 shows an example of a compo-
nent containing a generic component member variable.

1 COMPONENT House;

2 VARIABLE kitchen: ANY(Food |

Electricity);

3 END House;

Listing 2: House component with a generic member
variable

The kitchen variable can be instantiated by any com-
ponent offering at least Food and requiring at most
Electricity.

An INTERFACE uses EBNF notation [12] to de-
fine a sequence of messages exchanged between two
components connected through the interface. The
component offering the interface acts as the server
and the requiring side as the client. Each message
declares a direction in which it is going, IN messages
go from the client to the server and OUT messages from
the server to the client. The communication ends as
soon as the interface specification has been fulfilled
or a special finish message has been sent from either
side. The Hello interface can be found in listing 3.

1 INTERFACE Hello;

2 { IN GreetingRequest }

3 OUT Greeting

4 END Hello;

Listing 3: Hello interface declaration

3. Implementation

As already mentioned in section 1, up until now the
Composita system was available as a virtual machine
or bootable optical disk image for x86 systems. Even
with the convenience of a virtual machine image, the
setup process is rather time consuming. By making the
Composita compiler and runtime available as a server-
less web-application, code can be compiled and exe-
cuted on any device with a web browser and an active
internet connection.

To fulfill this purpose, the existing compiler and
runtime needed to be implemented in a language
that can easily be integrated into a serverless web-
site. This requirement only leaves a few feasible op-
tions: JavaScript [13] itself, any other language that
can be transpiled into JavaScript, or WebAssembly
(WASM) [14]. Due to these restrictions, its widespread
use and support, and the static type safety guarantee,
TypeScript has been chosen for the implementation.

To ease code integration, the compiler, runtime and
Intermediate Language (IL) were split into node pack-
ages that are distributed through the Node Package
Manager (npm) registry [15]. Each package contains
the TypeScript code, type annotations, and two dif-
ferent transpilations. The first transpilation targets
ECMAScript 5 [16] to support older browsers and
Node.js [17] versions. The second one targets ES-
Next [18] supporting modern browsers and the newest
releases of Node.js. While the type annotations allow
for an easy integration into other TypeScript projects.

The Node.js packages @composita/compiler,
@composita/runtime, @composita/il, and
@composita/ts-utility-types have been pub-
lished to the npm registry and can be installed using
any node package manager, for example yarn [19] or
the npm [20] tool.

3.1. Compiler

The compiler takes code in the form of a string and
outputs its IL code representation, following the classic
approach found in N. Wirth’s Compiler Construction
book [21].
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Figure 2: Compiler package overview, showing the
main building blocks and its dependencies

The different compilation stages are split into lexer,
parser, checker, and generator. Figure 2 provides an
overview of the compiler package implementation, by
showcasing the dependencies and outputs of each com-
pile stage. The lexer consumes the input string and
outputs an array of tokens. These are subsequently
used as the input for the parser, which in turn out-
puts an Abstract Syntax Tree (AST), in the form of
a program root node. Next is the checker, taking the
AST and transforming it into a symbol table. During
the last step the symbol table is passed to the code
generator producing the IL representation.

3.2. Intermediate Language

The IL contains a list of all component and inter-
face descriptors found during compilation. It further
specifies a list of component descriptors considered to
be valid entry points, as described in section 3.3.4.
The different descriptors contain all the information
required for them to be consumed by the runtime.

3.3. Runtime

Figure 3 presents an overview of the runtime, made
out of a scheduler for the different active components
and services, an instruction interpreter and an inter-
preter for system operation codes. The runtime pro-
vides a means for the program to communicate with
the outside world. The communication is currently
limited to taking the IL as its only input source and
outputting text by calling a provided output function,
taking a string as its argument. Furthermore, the run-
time handles the creation and queuing of active com-
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Figure 3: Runtime package overview, showing the main
building blocks and its dependencies

ponents and services, as well as maintaining a mapping
for each pointer to its value.

3.3.1. Scheduler

The implementation of the scheduler is based on the
round-robin scheduling algorithm [22], whereby it will
enqueue the next ready component or service after an
instruction has been executed and, should it not al-
ready be completed, move the currently active one to
the back of the queue.

3.3.2. Interpreter

There are two types of interpreters implemented. One
for instructions, and one for system operation codes.
The latter handles system provided proper and func-
tion procedures, like WRITE(x) and SQRT(x), as well
as type conversions, like REAL(x) or TEXT(x). The in-
struction interpreter takes a pointer to a value as its
input, where it will then try to fetch and interpret the
next instruction from.

3.3.3. Values

The descriptors provided by the IL are used to create
the different values managed by the runtime during
execution. There are two main value types: active and
built-in values.

An active value represents either a COMPONENT, an
IMPLEMENTATION or a PROCEDURE. It contains a ref-
erence to its descriptor, where all the instructions
and further declaration descriptions are stored. Ac-
cess to the value is possible through its respective
pointer value, which is stored in the runtime. An
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IMPLEMENTATION is modeled as a service, that further
holds a queue used for sending and receiving messages.

The Composita system provides the built-in
INTEGER, REAL, CHARACTER, TEXT and BOOLEAN types.
Their implementation contains a single TypeScript ba-
sic type field. Due to TypeScript’s inability to differ-
entiate between integer and floating point, as well as
between character and string values, these basic types
could not be used to represent the original Composita
built-ins directly.

3.3.4. Program Entry Points

This implementation extends the original language
definition in order to allow for an additional at-
tribute. That attribute is used to mark a compo-
nent as a possible program entry point, showcased
by listing 4. With this attribute, a component is
considered an entry point if it is marked as such
and does not require any interface to be connected.

1 COMPONENT { ENTRYPOINT }

HelloWorld;

2 BEGIN

3 WRITE ("Hello World ");

4 WRITELINE

5 END HelloWorld;

Listing 4: Composita language extension allowing for
components to marked as potential program entry
points

It could be argued that this extension is not nec-
essary as it certainly breaks backwards compatibility,
and there are other approaches that would work just
as well. For example, an initial implementation just
assumed any component on a program level, that does
not require any interfaces to be connected, to be an
entry point.

One approach to solve this issue, could be to always
take the first component complying to the required in-
terface restriction. As an alternative, the list of po-
tential entry points could also be provided to the user
interface (UI), where the users then selects one or mul-
tiple entries. Each approach has its own set of advan-
tages and disadvantages, that have to be considered.
For example, with the approach of just taking all valid
entry points, the user needs to keep track of what com-
ponents are potential entry points themselves, which
can easily lead to undesired behavior in the program.

Many languages define a single point of entry by
denoting a special function usually called main as their
program starting point. The C and C++ languages can
be mentioned as a prominent examples for that. C++

defines the program start in its ISO standard under

[basic.start.main] [23].

3.3.5. Creating New Values

Components are created by the means of the NEW func-
tion, in contrast to built-in types, that get default ini-
tialized during instantiation of their parent container.
Services representing an implementation of a specific
interface, do not have a dedicated NEW instruction. In-
stead they are created once the service implementation
gets connected to a component.

3.3.6. Blocking Instructions

Encountering any blocking instruction like receive, re-
ceive check or an exclusive monitor lock acquisition,
will cause the component or service to stop from ad-
vancing its instruction pointer, until the instruction has
been successfully executed. If either the receive or re-
ceive check instruction are executed, the contents of
the oldest queued message is checked against the ex-
pected message descriptor. The exclusive monitor lock
requester has to wait until the lock is released, before
being able to acquire it.

3.3.7. Concurrency

The underlying JavaScript architecture is single-
threaded with an event queue. Into this queue syn-
chronous and asynchronous events can be posted, how-
ever, each posted event has to be run to completion
before the next one can be started. There is a way
that allows to implement concurrency by using a Web-
Worker [24]. Such a worker keeps the Composita web-
site reactive even if a playground program is blocking
the runtime. The runtime uses only a single thread
and simulates concurrency by keeping a queue of ac-
tive values, and switching through them. Nevertheless,
the implementation supports the AWAIT statement, as
well as the EXCLUSIVE attribute. The await statement
checks a boolean expression and releases a held exclu-
sive monitor lock if the expression evaluates to false
until it runs the check again. The SHARED monitor lock
from the original language has yet to be implemented.

3.4. Website

The Composita language implementation result-
ing of this thesis is made available to the public at
https://www.composita.dev/. The website is built us-
ing the React [25] web framework and depends on
CodeMirror [26] for its editor capabilities. It is de-
ployed using Github pages [27]. Figure 4 shows a screen
capture of the Composita website playground.
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Figure 4: Screen capture of the Composita playground

3.5. Limitations

As mentioned earlier, there are some features miss-
ing or only partially available in this implementation’s
current form. The following list gives an overview of
the currently known limitations:

• Interface protocol checks during program execu-
tion are not implemented

• Interface cardinality is ignored

• System provided interfaces are not implemented

• DELETE of components is not handled

• CONNECT interface redirection is not supported

• DISCONNECT is not handled

• OFFERS and REQUIRES expressions are ignored

• MOVE operation is not implemented

• SHARED monitor lock is not implemented

• EXCLUSIVE monitor lock implementation needs to
be improved to support more complex use cases

• PASSIVATE is ignored

• Virtual time concept is not implemented

Other known issues not related to the language port:

• Error handling needs to be improved and compiler
warning and errors should be enhanced

• Cancellation of a running program is not possible,
due to the code running and not accepting external
input

• Scheduler algorithm not always optimal and could
be made selectable by the user

Both of these lists are not final and most probably will
need to be extended once more users are actively using
the website and its playground to learn about Com-
posita.

4. Language Evolution

Alain Kay, one of the pioneers in object oriented
programming, once said that “everything is an ob-
ject” [28]. What if this concept could be applied to
Composita by saying that “everything is a compo-
nent”? Components and service implementations are
the primary Composita constructs, yet they are not the
only constructs. There are still procedures and func-
tion calls, used for either calling a procedure, or the
system, like WRITE or WRITELINE.

The following paragraphs present some ideas that
have come up during the implementation of the Com-
posita language in its original design. Due to the lim-
ited time and resources the presented ideas have not
made it past the idea stage and, therefore, no imple-
mentation showcasing the limitations and implementa-
tion difficulties exists.

4.1. Braces Syntax

The most visible language changes are updates to
the syntax. Composita had been heavily inspired by
the Oberon language. These changes would mostly ef-
fect the lexing and parsing stages of the compilation,
but one could also continue with changes to the se-
mantics of the Composita language to achieve further
improvements.

Take for example the classic hello world pro-
gram written in Composita, as shown in listing 5.

1 COMPONENT { ENTRYPOINT }

HelloWorld;

2 BEGIN

3 WRITE ("Hello World ");

4 WRITELINE

5 END HelloWorld;

Listing 5: The classic hello world program in
Composita

By replacing the uppercase keywords with lower
case ones, and using braces rather than an
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explicit END keyword for creating code blocks,
the result will look something like in listing 6.

1 component HelloWorld {

2 begin {

3 write ("Hello World ");

4 writeline

5 }

6 }

Listing 6: The hello world program after transforming
it to a syntax using braces

4.2. Components Only

At its core, Composita is built around the idea of
having components, but it still supports other con-
structs like procedures, built-in operators, and record
types defined in the interfaces. Unifying those has
the potential of simplifying the language significantly.
This would of course not come without downsides
and many unanswered questions. One such question
would be to define what happens whenever a com-
ponent gets packed into a message and passed on to
a service. Will it still continue to execute its in-
structions? Will a new component be instantiated?
What happens to the existing connections? How
are active service values depending on the compo-
nent handled? Will the current instance be moved
- making it inaccessible from the outside - or should
a copy of the current state be created? Here, one
could potentially look at other languages like C++,
where copying and moving class instances are core con-
cepts [29]. Inspired by that, the syntax could look
something along the lines of what is shown in listing 7.

1 component Comp provides Copy {

2 variable v: integer;

3 implementation Copy {

4 variable copy: Comp;

5 begin {

6 new (copy , Comp);

7 !copy

8 }

9 }

10 }

Listing 7: One potential way a component providing a
copy mechanism could look like

Most of these implementation blocks could potentially
be default generated by the compiler in order to keep
boilerplate code to a minimum.

4.3. Generics

Composita currently allows generic programming for
components by using the ANY( (* OFFERED *) | (*

REQUIRED *) ) syntax. Here one specifies the offered
and required interfaces a component must satisfy in or-
der to qualify as a valid substitution, whereby the pipe
symbol | is used to separate the offered and required
interfaces. Taking inspiration from C++ and its tem-
plate language, one could extend the capabilities of ANY
constructs, to increase the type safety of the language.
The syntax in listing 8 could be an example for that.

1 component [T] TemplateComponent {

2 variable temp: T;

3 }

4 component Main {

5 variable templateInstance: [

integer] TemplateComponent;

6 }

Listing 8: Extension of the current generic variable
approach

One could go even further and allow disjunction types
as generic constraints. The different types could be sep-
arated using a double pipe ||, similar to languages like
TypeScript. This would look something like listing 9.

1 component [T: House || any(Food |

Water)] TemplateComponent {

2 variable foodStation: T;

3 }

4 component House {}

5 component Kitchen offers Food

requires Water {}

6 component Main {

7 variable templateInstanceA: [

House] TemplateComponent;

8 variable templateInstanceB: [

Kitchen] TemplateComponent;

9 }

Listing 9: Component featuring a disjunction generic
type constraints

Where the template parameter T must be either a
House or any component that requires Water and pro-
vides Food.

The implementation is probably the most difficult
part to this extension as changes to all compile stages
are required. There are open questions as well, like
how to handle generic variance, or what syntax to use.
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4.4. Evolution Process

Before any changes can be implemented, a language
evolution process should be defined. This process de-
scribes how changes to the language should be pro-
posed and implemented if accepted. Every language
has to choose one process or another if it is willing to
evolve. Languages like C++ are governed by a commit-
tee [30], with the community designing the extensions
to the language. Other approaches are, for example,
Rust’s RFC [31] or Swift’s [32] language evolution pro-
cess. Both allow for fast changes, making it easier for
a language to keep up with with the surrounding tech-
nical evolution.

5. Related Work

Many modern languages feature an online play-
ground, where they allow users to experiment and, as
the word indicates, play with the respective languages.
Notable members are TypeScript [33] and Kotlin [34].
There are also projects allowing multiple languages to
be compiled and run online. An important example
would be the Compiler Explorer [35], being most fa-
mous for its, but not limited to, C++ compiler support.
Due to its seamless Python and math tooling integra-
tion, Jupyter [36] is heavily used in academia. Another
category are the different programming-learning web-
sites like CodeWars [37], where they use various forms
of gamification to get users to program in a diverse set
of programming languages.

6. Conclusion

The Composita language has for the most part been
successfully ported and been made available to the pub-
lic. The TypeScript implementation features strong
type checking and a runtime to interpret the generated
code. However, it is still incomplete and does not fully
support all language features, as listed in section 3.5.

Performance was not a primary goal of this thesis,
hence no further effort has been taken to improve on
that topic. But one can assume that by the simple
nature of being interpreted, the achieved performance
can not be compared to what the original Oberon im-
plementation can offer. If this should be taken into
account, then one could think about porting parts
to WASM as it is supported by most of the current
browsers [38], and greatly outperforms JavaScript on
computationally demanding tasks.

Having the language available as a website provides
the means for everyone with access to the internet and

a browser to play around and learn more about the
language and its concepts. The proposed changes to
the language syntax and semantics in section 4 can be
used as an inspiration for future experimentation with
the language and its design.
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