
Persistent Oberon:

A Programming Language with

Integrated Persistence

Luc Bläser
ETH Zürich

blaeser@inf.ethz.ch

APLAS 2007, Singapore, 29 Nov. 2007

Programming with Persistence

• Languages only offer a volatile memory model

• Persistence must be explicitly programmed

– use of a database or serialisation

• Programming Overheads:

– Separate data models

• Mapping of the program model to the persistent storage

• Explicit loading and storing of the persistent data

– Object-oriented structures

• Efficient representation of persistent object structures

• Maintenance of integrity of references and memory safety

(e.g. garbage collection)

 Highly intricate, time-consuming and error-prone

Persistent Programming Languages

• Languages with inbuilt persistence

– Vision: Program data is automatically kept persistent

• Open problems:

– Languages still require artificial programming

interfaces for persistence

– No uniform model for interacting with existing

programs

– Often not fully memory-safe (e.g. incomplete or

offline garbage collection)

Existing Persistent Languages

INTERFACE Bank;

IMPORT Database;

VAR accounts: AccountList;

p: Database.Public

BEGIN

TRY

p := Database.Open(“Bank”),

accounts := NARROW(p.getRoot(),

AccountList)

EXCEPT

Database.DatabaseNotFound =>

Database.Create(“Bank”);

p := Database.Open(“MyData”);

NEW(accounts); p.SetRoot(accounts)

END

END Bank.

import org.opj.store;

class Bank {

static AccountList accounts;

public static void main(String[] args) {

PJStore p = PJStoreImpl.getStore();

if (p.existsPRoot(“Bank”)) {

accounts = (AccountList)

p.getPRoot(“Bank”));

}

else {

accounts = new AccountList();

p.newPRoot(“Bank, accounts);

}

}

}

artefacts for accessing

persistent roots

Persistent Modula 3 PJama resumed or started

for the first time

no seamless integration of

a persistent object graph

Existing Persistent Languages

INTERFACE Bank;

IMPORT Transaction;

PROCEDURE Deposit(account: Account;

amount: INTEGER);

BEGIN

TRY

Transaction.begin();

INC(account.balance, amount);

Transaction.commit()

EXCEPT

Transaction.TransactionNotInProgress

=> (* ... *)

END

END Deposit;

END Bank;

import org.opj.store;

class Account {

int balance;

void Deposit(int amount) {

balance += amount;

try {

OPRuntime.checkpoint();

} catch(OPCheckpointException e) {

// handle exception

}

}

Persistent Modula 3 PJama

explicit starting and stopping

of transactions via an API

global snapshot

may accidentally save other

uncompleted transactions

no clean language-integrated

transaction concept

Persistent Oberon

A programming language with naturally integrated
persistence

Highlights:

• Seamless persistence
– Modules and objects are inherently persistent

– No persistence-specific artefacts or API

• General data model
– Uniform use of persistent, volatile and cached data

• Efficient and safe memory management
– non-disruptive persistent garbage collection

– simultaneous object caching in main memory

A Persistent Program

MODULE Bank;

TYPE

Account = OBJECT

VAR

customer: Customer;

balance: REAL

END Patient;

Customer = OBJECT

VAR name: TEXT

END Customer;

AccountList = OBJECT (*…*)

END AccountList;

VAR accounts: AccountList

END Bank.

module as persistence root

persistent reference
persistence by

reachability

identical to normal

Oberon program

Bank accounts

Account 1

Account 3

Customer 1

root

persistent

object graph

Account 2

Customer 2

Module and Objects

Persistence enabled by the module concept

• Modules have conceptually infinite lifetime
– Once loaded and initialized, they stay permanently

alive and survive system restarts

– The contained references are also persistent

• Objects are implicitly persistent
– An object is persistent if reachable from a module

Difference to classical languages

• No module concept
– only static variables may suit as persistent roots

• Main-method
– no separation between initialization and main

program activity

Transactions

PROCEDURE Transfer

(from, to: Account; amount: REAL);

VAR success: BOOLEAN;

BEGIN {TRANSACTION}

success := from.Withdraw(amount);

IF success THEN to.Deposit(amount)

ELSE from.customer.Inform

END

END Transfer;

Account = OBJECT

VAR balance: REAL;

PROCEDURE Deposit(amount: REAL);

BEGIN {TRANSACTION}

balance:= balance + amount

END Deposit;

(*…*)

END Account;

subtransaction

top-level

transaction

Withdraw

Deposit

Transfer

effects become durable

Transactions

Describe transitions from one consistent state to another

• Atomicity

– Effects of a transaction are either completely applied or not at all

– During an unfinished transaction, changes are only temporary

• Nesting

– Sub-transaction can be aborted without aborting the surrounding

transaction

– Changes of sub-transaction only become durable when the top-

most transaction is completed

• Isolation

– Concurrent transactions are executed in a serialisable way

– Transactions see effects of others as if they were executed in a

serial order

General Data Model

MODULE Bank;

VAR

accounts: AccountList;

loggedInManagers: {TRANSIENT} ManagersList;

leastRecentlyAccessed: {WEAK} AccountList;

END Bank.

PERSISTENT

reference by default reset to NIL after

system interruption

reclaimable by

garbage collector Account 1

leastRecently-

Accessed

Account 2

(closed)

Bank loggedIn-

Managers

accounts

garbage

transient

objects

persistent

objects

interoperability to

existing modules by

transient references

Runtime System

• Compiler and Evolution

– Migrates existing persistent data to new program

version

• Runtime System

– Fault-tolerant persistent object system

– Caching of persistent objects in main memory

– Efficient non-disruptive persistent garbage collection

– Customisable transaction management

• Serial scheduling or conservative locking

• Optimistic concurrency control

=> unexpected rollbacks due to serialisation conflicts

Cache-Aware Garbage Collection

persistent mature object system

lazy loading

to be removed by

main-memory GC

to become

transient by

disk GC

temporary

modification
transient

update set on transaction commit

incremental

partitioned

disk GC

disk storage

main memory

Performance

runtime in

milliseconds

Persistent Oberon A classical approach

(Java, MySQL 4.0, JDO)

empty cache preloaded empty cache preloaded

T1 (read) 91 23 3400 1800

T3C (write) 390 300 13000 11000

CU (cache) 81 115

OO7 persistence benchmark

Intel Pentium 4, 3GHz, HD 8.5ms seek, 7200 rpm, 16MB/s

Conclusions

A new persistent programming language

• Fully integrated persistence
– No persistence-specific APIs and artefacts

– Simple generalization of modular object-orientation

• General data model
– Uniform support of persistent, transient and

temporary data

• Kept to a minimum of fundamental concepts
– Persistence and transactions

– Extra features (distribution, querying) need to be
provided by normal program logic

• Project website
– http://www.jg.inf.ethz.ch/persistence

