Persistent Oberon:
A Programming Language with
Integrated Persistence

Luc Blaser
ETH Zurich
blaeser@inf.ethz.ch

Eidgendssische Technische Hochschule Ziirich .
Swiss Federal Institute of Techn i APLAS 20071 SlngapOI’e, 29 NOV' 2007

ology Zurich

Programming with Persistence

« Languages only offer a volatile memory model

* Persistence must be explicitly programmed
— use of a database or serialisation

* Programming Overheads:

— Separate data models
« Mapping of the program model to the persistent storage
« Explicit loading and storing of the persistent data

— Object-oriented structures

 Efficient representation of persistent object structures

* Maintenance of integrity of references and memory safety
(e.g. garbage collection)

= Highly intricate, time-consuming and error-prone

Persistent Programming Languages

« Languages with inbuilt persistence
— Vision: Program data is automatically kept persistent

* Open problems:

— Languages still require artificial programming
Interfaces for persistence

— No uniform model for interacting with existing
programs

— Often not fully memory-safe (e.g. incomplete or
offline garbage collection)

Existing Persistent Languages

Persistent Modula 3

INTERFACE Bank;
IMPORT Database;
VAR accounts: AccountList;
p: Database.Public
BEGIN
TRY
p := Database.Open(“Bank”),
accounts := NARROW(p.getRoot(),
AccountList)
EXCEPT
Database.DatabaseNotFound =>
Database.Create(“Bank”);
p := Database.Open(“MyData”);
NEW!(accounts); p.SetRoot(accounts)

PJama resumed or started

END
| 4

import org.opj.¢ for the first time
class Bank {

static AccountL}

ounts;
public stati Id main(String[] args) {
= PJStorelmpl.getStore();
if (p.existsPRoot(“Bank?)) {
accounts = (AccountList)
p.getPRoot(“Bank™));
}
else {
accounts = new AccountList();
p.newPRoot(“Bank, accounts);

}
}
}

END Bank.
artefacts for accessing
persistent roots

7@

no seamless integration of
a persistent object graph

Existing Persistent Languages

Persistent Modula 3

INTERFACE Bank;
IMPORT Transaction;
PROCEDURE Deposit(account: Account;
amount: INTEGER);
BEGIN
TRY
Transaction.begin();
INC(account.balance, amount);
Transaction.commit()
EXCEPT
Transaction.Tr
=> (* ... %)
END
END Deposit;

actionNotInProgress

PJama

Import org.opj.store;

class Account {

int balance; global snapshot

void Deposit(int amou
balance += amount;

try {
OPRuntime.checkpoint();

END Bank;

4
|/ \

explicit starting and stopping
of transactions via an API

may accidentally save other
uncompleted transactions

no clean language-integrated
transaction concept

Persistent Oberon

A programming language with naturally integrated
persistence

Highlights:
e Seamless persistence

— Modules and objects are inherently persistent
— No persistence-specific artefacts or API

* General data model
— Uniform use of persistent, volatile and cached data
 Efficient and safe memory management

— non-disruptive persistent garbage collection
— simultaneous object caching in main memory

A Persistent Program

MODULE Bank;% module as persistence root

TYPE |
Account = OBJECT : persistence by
VAR / persistent reference reachability

customer: Customer; _
balance: REAL persisient Account Customer 1
END Patient: object graph

Customer = OBJECT Bank accounts

VAR name: TEXT
END Customer; root Account 2

AccountList = OBJECT (*...%)
END AccountList; Account 3 Customer 2

END Bank. Oberon program

VAR accounts: AccountList D Identical to normalT

Module and Objects

Persistence enabled by the module concept

* Modules have conceptually infinite lifetime

— Once loaded and initialized, they stay permanently
alive and survive system restarts

— The contained references are also persistent

* Objects are implicitly persistent
— An object is persistent if reachable from a module

Difference to classical languages
* No module concept
— only static variables may suit as persistent roots

« Main-method

— no separation between initialization and main
program activity

Transactions

Account = OBJECT
VAR balance: REAL:

PROCEDURE Deposit(amount: REAL);

BEGIN {TRANSACTION}
balance:= balance + amount
END Deposit;
(*...%)
END Account;

PROCEDURE Transfer
(from, to: Account; amount: REAL);
VAR success: BOOLEAN:;
BEGIN {TRANSACTION}
success .= from.Withdraw(amount);
IF success THEN to.Deposit(amount)
ELSE from.customer.Inform
END
END Transfer;

top-level
transaction

Transfer vﬂ

—
I

effects become durable

Va

Transactions

Describe transitions from one consistent state to another

« Atomicity
— Effects of a transaction are either completely applied or not at all
— During an unfinished transaction, changes are only temporary

* Nesting

— Sub-transaction can be aborted without aborting the surrounding
transaction

— Changes of sub-transaction only become durable when the top-
most transaction is completed
 Isolation
— Concurrent transactions are executed in a serialisable way

— Transactions see effects of others as if they were executed in a
serial order

General Data Model

MODULE Bank; | PERSISTENT
VAR reference by default reset to NIL after
system interruption

accounts: AccountList;
loggedinManagers: {TRANSIENT} ManagersList;

leastRecentlyAccessed. {WEAK} AccountList;

END Bank. persistent
reclaimable by objects

garbage collector accounts Account 1

transient
Bank ™.

loggedIn- :
- . o “.._ Managers objects
Interoperabllity to A A ‘5
ot ccoun
existing modules by garbage (closed)
transient references leastRecently-

Accessed

Runtime System

« Compiler and Evolution
— Migrates existing persistent data to new program
version
* Runtime System
— Fault-tolerant persistent object system
— Caching of persistent objects in main memory
— Efficient non-disruptive persistent garbage collection

— Customisable transaction management
 Serial scheduling or conservative locking

» Optimistic concurrency control
=> unexpected rollbacks due to serialisation conflicts

Cache-Aware Garbage Collection

update set on transaction commit

tem_p_ora_ry to be removed by
modification main-memory GC

\/ lazy loading

transient

main memory

disk storage

incremental to bepome
partitioned transient by
disk GC - , disk GC
persistent mature object system

Performance

OQ7 persistence benchmark

runtime in Persistent Oberon A classical approach
milliseconds (Java, MySQL 4.0, JDO)
empty cache | preloaded |empty cache | preloaded
T1 (read) 91 23 3400 1800
T3C (write) 390 300 13000 11000
CU (cache) 81 115

Intel Pentium 4, 3GHz, HD 8.5ms seek, 7200 rpm, 16MB/s

Conclusions

A new persistent programming language

* Fully integrated persistence

— No persistence-specific APIs and artefacts

— Simple generalization of modular object-orientation
« General data model

— Uniform support of persistent, transient and
temporary data

« Kept to a minimum of fundamental concepts
— Persistence and transactions

— Extra features (distribution, querying) need to be
provided by normal program logic

* Project website
— http://www.jg.inf.ethz.ch/persistence

