
Checking Non-Deterministic 
Behavior in Unit Tests

Luc Bläser

HSR Hochschule für Technik Rapperswil
Switzerland

ECOOP ISAGT Workshop 2018
20 July 2018, Amsterdam



Concurrency is Omnipresent

▪ Software becomes increasingly concurrent

▪ Mostly through implicit multi-threading

□ Asynchronous or reactive programming, 

□ Task parallelization, thread pools

□ Parallel querying, parallel loops

□ Timers, finalizers etc.

2



Challenge for Testing

▪ Non-deterministic execution

□ Issues may only occur in certain schedules

□ Bugs can appear seldom or never in tests

▪ Consequences

□ Tests sometimes green, sometimes red

□ Unreliable regression testing

3



Types of Concurrency Errors

▪ Race conditions
□ Errors because of insufficient synchronization

▪ Data races
□ Unsynchronized concurrent RW or WW accesses to same 

variable or array element

▪ Deadlocks
□ Cyclic lock-and-wait dependencies

▪ Livelocks
□ Cyclic perpetual wait dependencies (spinning threads)

▪ Starvation
□ Continuous progress prevention (with chance to recover)

4
Requires knowledge of program semantics (intended behavior, progress)



Frequent Practitioner’s Approach

Concurrent stress tests

▪ Many threads call operations

▪ Check assertions at the end

▪ Insert extra synchronization in tests

5

+ No extra tools
− Sporadadic occurrence
− Not reproducible
− Code effort



Concurrent Unit Test

6

[TestMethod]
[Timeout(TestTimeout)]
public void TestConcurrentDeposits() {
const int N = 10;
var account = new BankAccount();
var list = new List<Thread>();
for (int count = 0; count < N; count++) {
var thread = new Thread(() => account.Deposit(1));
thread.Start();
list.Add(thread);

}
foreach (var thread in list) {
thread.Join();

}
Assert.AreEqual(N, account.Balance);

}

Timeout in case of 
deadlocks/blocking

Join before assertion

Check final balance 
(race condition)



Systematic Approaches

▪ Dynamic analysis (e.g. ThreadSanitizer, Inspector) 

+ Precise

- Sporadic occurrence

- Not reproducible

▪ Static analysis (e.g. CHESS, JPF)

+ Completeness

- False positives

- State explosion

▪ Sound + precise in general = halting problem

7



Hybrid Approaches

▪ Dynamic + static

□ Run, analyze trace, statically derive alternative traces

□ E.g. Concolic Testing, Predictive Testing

+ Precision

- Expensive constraint solver

▪ Systematic concrete interpretation

□ Exhaustive testing towards full schedule coverage

□ E.g. CHESS, JPF

+ Precision

- State explosion

8



Goals for Our Checker

▪ Extensive: Analyze many schedules (but not all)

▪ Fast: Few seconds even for large code

▪ Reproducible: Always report the same issues

▪ Precise: Few false warnings

But not complete, may miss issues

9

Initially designed for use in an IDE

Question: Could it be used for testing as well?



ISSTA 2018 Paper of Checker

10



HSR Parallel Checker

▪ Static checker tool for Visual Studio IDE

▪ For C#, covering wide concurrency spectrum

□ Tasks, async/await, parallel loops, various sync. constructs, 
atomics, volatile, finalizers, timers, parallel queries …

□ UI-apps/libraries/unit tests/console-apps

▪ Downloadable on Visual Studio Marketplace 
(>2.5k installs)

11



Approach

Randomized mostly-concrete 
interpretation

▪ Map code to internal runtime model

▪ Simulate execution on this model

▪ Maintain exact state where possible

▪ Repeated random scheduling

▪ Per-run and overall bound

▪ Report encountered issues

▪ Vector clock for race detection

12

Initialize model

first run

Pick random 

runnable thread

Simulate 

instruction

Per-run 

bound?
NO

Overall 

bound?

NO

YES

YES

next run

Report issues



Particular Aspects

▪ Reproducibility of results

□ Seeded pseudo-random numbers

□ Bounds on logical number of steps and size

▪ Dynamic technique in static context

□ Does not run the code

□ Code may be incomplete or incorrect

▪ Deliberately simple design

□ Random scheduling, no constraint solver

□ Examine more code with less sophistication

13



Abstract States

▪ Cope with unknown external input

□ Uninterpreted value

□ Imprecise assumptions (branches, locks, thread starts etc.)

□ May result in false positives (and false negatives)

▪ Today’s focus: Unit Tests

□ Full input should be defined, no user interaction

□ Checkers becomes entirely concrete

□ No false positives

14



IDE Checker Demo

15



Application to Testing

▪ Run checker by opening unit test source

□ Checker uses unit test method as entries

□ See errors in source code in IDE

▪ Run checker inside unit test framework

□ Run each unit test through the checker

□ See green/red unit test result

16



Parallel Unit Test Demo

17



Conclusion

▪ Testing is difficult – in particular for concurrency

□ Non-deterministic bug occurrence

□ Hard to reproduce, hard to detect at all

▪ Dynamic testing within static analysis

□ Our checker does this to be precise and reproducible

▪ Static analysis within dynamic testing

□ Unit tests could again run through the static checker

18



Thank You for Your Attention!

▪ Contact

□ Luc Bläser, HSR Hochschule für Technik Rapperswil

□ lblaeser@hsr.ch, http://concurrency.ch

▪ Project Website

□ http://parallel-checker.com

▪ VS Marketplace

□ https://marketplace.visualstudio.com/items?itemName=L
BHSR.HSRParallelCheckerforC7VS2017

mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://parallel-checker.com/
https://marketplace.visualstudio.com/items?itemName=LBHSR.HSRParallelCheckerforC7VS2017

