Checking Non-Deterministic
Behavior in Unit Tests

Luc Blaser

HSR Hochschule fur Technik Rapperswil
Switzerland

AL HSR Concurrency Lab ECOOP ISAGT Workshop 2018
FHO Fachhochschule Ostschweiz Prof. Dr. Luc Blaser 20 JUIy 2018, Amste rdam

Concurrency is Omnipresent

= Software becomes increasingly concurrent
= Mostly through implicit multi-threading

0 Asynchronous or reactive programming,
0 Task parallelization, thread pools
0 Parallel querying, parallel loops

0 Timers, finalizers etc.

Challenge for Testing

= Non-deterministic execution
O Issues may only occur in certain schedules
0 Bugs can appear seldom or never in tests
= Consequences

0 Tests sometimes green, sometimes red

0 Unreliable regression testing

A ﬁ BankUnitTest (7) | ﬁ BankUnitTest (7) F | ﬂ BankUnitTest (7)
| EB BankUnitTest (7) | B BankUnitTest (7) 4) BankUnitTest (7)
b) BankMNormalTest (5) b €3 BankMormalTest (5) b @ BankMormalTest (5)

P €3 BankStressTest (2) b €9 BankStressTest (2) b @) BankStressTest (2)

Types of Concurrency Errors

Race conditions
0O Errors because of insufficient synchronization

Data races

0 Unsynchronized concurrent RW or WW accesses to same
variable or array element

Deadlocks
0 Cyclic lock-and-wait dependencies
Livelocks
0 Cyclic perpetual wait dependencies (spinning threads)

Starvation
0 Continuous progress prevention (with chance to recover)

Requires knowledge of program semantics (intended behavior, progress)

Frequent Practitioner’s Approach

Concurrent stress tests

= Many threads call operations

" Check assertions at the end

" |nsert extra synchronization in tests

+ No extra tools

— Sporadadic occurrence
— Not reproducible

— Code effort

Concurrent Unit Test

Timeout in case of
[TestMethod] :
, , deadlocks/blocking
[Timeout(TestTimeout)]

public void TestConcurrentDeposits() {

const int N = 10;

var account = new BankAccount();

var list = new List<Thread>();

for (int count = 0; count < N; count++) {
var thread = new Thread(() => account.Deposit(1l));
thread.Start();
list.Add(thread);

}

foreach (var thread in list) {
thread.Join();

}

Assert.AreEqual (N, account.Balance);

Join before assertion

Check final balance

(race condition)

Systematic Approaches

= Dynamic analysis (e.g. ThreadSanitizer, Inspector)
+ Precise
- Sporadic occurrence
- Not reproducible

= Static analysis (e.g. CHESS, JPF)

+ Completeness
- False positives
- State explosion

= Sound + precise in general = halting problem

Hybrid Approaches

= Dynamic + static
0 Run, analyze trace, statically derive alternative traces
0 E.g. Concolic Testing, Predictive Testing
+ Precision

- Expensive constraint solver

= Systematic concrete interpretation
0 Exhaustive testing towards full schedule coverage
0 E.g. CHESS, JPF
+ Precision

- State explosion

Goals for Our Checker

= Extensive: Analyze many schedules (but not all)
= Fast: Few seconds even for large code

= Reproducible: Always report the same issues

" Precise: Few false warnings

But not complete, may miss issues

Initially designed for use in an IDE

Question: Could it be used for testing as well?

ISSTA 2018 Paper of Checker

Practical Detection of Concurrency Issues at Coding Time

Luc Blaser
HSR Hochschule fiir Technik Rapperswil
Rapperswil, Switzerland
Iblaeser@hsr.ch

ABSTRACT

We have developed a practical static checker that is designed to in-
teractively mark data races and deadlocks in program source code
al development time. As this use case requires a checker to be both
fast and precise, we engaged a simple technique of randomized
bounded concrete concurrent interpretation that is experimentally
effective for this purpose. Implemented as a tool for C# in Visual
Studio, the checker covers the broad spectrum of concurrent lan-
guage concepts, including task and data parallelism, asynchronous
programming, Ul dispatching, the various synchronization primi-
tives, monitor, atomic and volatile accesses, and finalizers. Its ap-
plication to popular open-source C# projects revealed several real
issues with only a few false positives.

CCS CONCEPTS

= Software and its engineering — Concurrent programming
structures; Software defect analysis;

current language versions. Static concurrency analysis continues
to be an area of research where very few practical tools [26, 36] are
on hand. For newer C# versions, there even exists no static checker
for data races or deadlocks at all. Previous tools such as CTTESS [24]
have been discontinued. The situation is discussed in more detail
in Sectlion 6.

In this work, we aim to provide a practical tool that detects com-
mon concurrency errors in a slightly different setting than other
work in this area. This tool should interactively support software
developers when working in an integrated development environ-
ment (IDE): It should directly highlight problematic program sec-
tions with regard to concurrency during the coding. For this pur-
pose, the following checker properties were considered essential:

Static: The source code as displayed in the IDE needs to
be analyzed. The code being written can be incomplete or
contain erroneous fragments, making a program execution
and thus a dynamic analysis impossible.

Para||e|
HSR Parallel Checker

Checker

= Static checker tool for Visual Studio IDE
= For CH#, covering wide concurrency spectrum

0 Tasks, async/await, parallel loops, various sync. constructs,
atomics, volatile, finalizers, timers, parallel queries ...

0 Ul-apps/libraries/unit tests/console-apps

* Downloadable on Visual Studio Marketplace
(>2.5k installs)

11

Approach

Randomized mostly-concrete
Interpretation

Map code to internal runtime model
Simulate execution on this model
Maintain exact state where possible
Repeated random scheduling
Per-run and overall bound

Report encountered issues

Vector clock for race detection

first run

next run

Initialize model

Pick random
runnable thread

Simulate
instruction

Overall

bound?

Report issues

12

Particular Aspects

= Reproducibility of results

0 Seeded pseudo-random numbers

0 Bounds on logical number of steps and size
= Dynamic technique in static context

0 Does not run the code

0 Code may be incomplete or incorrect
= Deliberately simple design

0 Random scheduling, no constraint solver

0 Examine more code with less sophistication

13

Abstract States

= Cope with unknown external input
0 Uninterpreted value
O Imprecise assumptions (branches, locks, thread starts etc.)
0 May result in false positives (and false negatives)

" Today’s focus: Unit Tests
0 Full input should be defined, no user interaction
0 Checkers becomes entirely concrete
0 No false positives

14

IDE Checker Demo

EQJ BankTest - Microsoft Visual Studic
Fle Edit VYiew Project Build Debug Team Jools Test Analyze Window Help

O B-ARWE|9-C- IEEE
BankTest.cs
[BankTest

Debug =~ AnyCPU - b Start-| 5

BankAccount.cs = X

-| %2 BaniTest Bankaccount -] © Withdraw(int amount)

¥ 57 | Quick Launch (Ctrl+Q)

Solution Explorer

Gﬁﬁl."|'®":»ﬁa"l'r@|oﬁlz|

2|3 353

public void Deposit(int amount)

{

1

lock (_sync)
{

<balance += amount;

public bool Withdraw(int amount}'

{
lock (_sync)

{

0—0—0—— 00— —
——
—

if (_balance »>= amount)

{

Jbalance -= amount;

return true;

}

return false;

public int Balance => _balance;

197% -

Error List

- ‘ € 0Errors ‘ 1. 4Wamings | 0 1 Message ‘

Description

Entire Solution | Build + IntelliSense Z Search Error List

~ | Code
0 ParallelChecker

Project File

Detection in 332 ms (2 issues) BankTest 1
Issue: #0 Data race on BankTest.BankAccount._balance
caused by write at "_balance += amount” in BankAccount.cs line 12

caused by thread or task at "() =»
{

account.Deposit(100);
war result = account. Withdraw{100];
Console.WriteLine(result);
1" in BankTest.cs line 11
caused by main thread at "Main" in BankTest.cs line 8
caused by read at "_balance" in BankAccount.cs line 28
caused by main thread at "Main" in BankTest.cs line 8

1, ParallelChecker BankTest BankAccount.cs 12

Issue: #1 Data race on BankTest.BankAccount._balance

[IgREY Output Find Symbol Results Breakpoints Exception Settings Call Hierarchy Package Manager Console

[Ready Ln 16

Line

Su...
Active

Active

Ad

v,

Search Solution Explorer (Ctrl+)

fa] Solution 'BankTest' (1 project)
Fl BankTest

b M Properties

3

B References

¥ App.config
P c# BankAccount.cs
b c# BankTest.cs

ELMLLY Sl g Team Explorer Class View

Properties

»

- a x

Luc Blaser ~

4 Add to Source Control &

15

Application to Testing

" Run checker by opening unit test source
0 Checker uses unit test method as entries
0 See errors in source code in IDE

= Run checker inside unit test framework

0 Run each unit test through the checker
0 See green/red unit test result

16

Parallel Unit Test Demo

Eﬂ BankUnitTest - Microsoft Visual Studic - Experimental Instance
File Edit View Build Debug
io-o -2 W9 -

Project Team Tools

Release -

Test Analyze
Any CPU

Run All | Run.. = | Playlist: All Tests «
Ra] BankUnitTest (14 tests) 4 failed

b @ BankUnitTest (7)
4 €3 Extemal (T)
4 €3 BankUnitTest (7)
4 €3 BankNormalTest (5)
(] DeposithoRace
€3 DepositRace
%] MixedDepositWithdrawRace
@ withdrawhoRace
0 WithdrawRace
4 €3 BankStressTest (2)
[/] ConcurrentDepositStressTestNoRace
0 ConcurrentWithdrawStressTestRace

Window
- b Stat | 5

Help
iy ‘

BankAccount.cs

L =
BankStressTest.cs BankNormalTest.cs
] BankUnitTest = “z BankUnitTest.BankStressTest
“lusing System.Collections.Generic;
using System.Threading;
using BankTest;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace BankUnitTest {
[TestClass]
public class BankStressTest {
[TestMethod]

= @ ConcurrentDepositStressTestNoRace(] ~

X & | Quick Launch (Ctr+) PEI - I 4

~ | Solution Explorer
DE-|o-5¢a
Search Solution Explorer (Ctrl+)

] Solution 'BankUnitTest' (1 project)
4] BankUnitTest

J Properties

=8 References

c# BankAccount.cs

c# BankMormalTest.cs

©* BankStressTest.cs

1 packages.config

=
=
-

v v v

public void ConcurrentDepositStressTestNoRace() {

const int N = 19, K = 18;
var account = new BankAccount();
var list = new List<Thread>();
for (int count = @; count < N; count++) {
var thread = new Thread(() => {
for (int run = @; run < K; run++) {
account.Deposit(1);

Solution Explorer [QEET NS

Properties

BankUnitTest.BankNormalTest.DepositRace

Source: BankMormalTest.cs line @

€3 Test Failed - BankUnitTest.BankNormalTest DepositRace

Message: ### Issue 1 Data race on
BankTest.BankAccount.Balance
caused by write at "Balance += amount" in
BankAccount.cs line 7
caused by thread or task at "() => account.Deposit
{100)" in BankNormalTest.cs line 11
caused by unit test thread
caused by read at "account.Balance” in
BankNormalTest.cs line 12
caused by unit test thread:

Elapsed time: 0:00:04.6292779

Copy All

Entire Solution

- HQOEHO!; ||| 1 15 Warnings H|o 1 Message ||

| Build - Intellisense

Search Error List

Project File -

BankUnitTest

Code Description
© ParallelCl Detection in 2857 ms (8 issues)
Issue: £0 Data race on BankTest.BankAccount.Balance
caused by write at "Balance += amount” in
BankAccount.cs line 7
caused by thread or task at ") => account.Deposit(100)"
1. ParallelClin BankNormalTest.cs line 11
caused by unit test thread
caused by read at "account.Balance” in
BankMormalTest.cs line 12
caused by unit test thread

BankUnitTest

Issue: #0 Data race on BankTest.BankAccount.Balance
caused by write at "Balance += amount” in
BankAccount.cs line 7
caused by thread or task at "() => account.Deposit(100)"
S— n BankMormallest.cs line 11
Error List

BankMormalTest..,

Line 5. W
1 Active

12 Active

Luc Blaser -

B o &=

4 Addto Source Control =

17

Conclusion

= Testing is difficult — in particular for concurrency
0 Non-deterministic bug occurrence
0 Hard to reproduce, hard to detect at all

= Dynamic testing within static analysis
0 Our checker does this to be precise and reproducible

= Static analysis within dynamic testing

0 Unit tests could again run through the static checker

18

Thank You for Your Attention!

= Contact
0 Luc Blaser, HSR Hochschule fir Technik Rapperswil
0 Iblaeser@hsr.ch, http://concurrency.ch

" Project Website
0 http://parallel-checker.com

= VS Marketplace

0 https://marketplace.visualstudio.com/items?itemName=L
BHSR.HSRParallelCheckerforC7VS2017

Parallel

HSR Concurrency Lab

FHO Fachhochschule Ostschweiz C h ec ke r Prof. Dr. Luc Blaser

mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://parallel-checker.com/
https://marketplace.visualstudio.com/items?itemName=LBHSR.HSRParallelCheckerforC7VS2017

