
A Component Language for

Structured Concurrent Programming

Luc Bläser

ETH Zürich / LBC Informatik

Talk at Microsoft, Redmond

29 September 2008

Motivation

Problems of object-orientation

• References

– Flat object structures without explicit hierarchies

– Intended encapsulation is not guaranteed

• Inheritance

– Forced combination of polymorphism and reuse

– Limited single inheritance or multi-inheritance conflicts

• Concurrency

– Unnecessarily blocking interactions via method calls

– Threads operating on passive objects without control

A New Programming Model

Component concept

• General abstraction unit at runtime

• Strict encapsulation

– External dependencies only allowed via explicit interfaces

• Component can offer and require interfaces

– Offered interfaces represent own external facets of a component

– Required interfaces are to be provided by other components

• Multi-instantiation from a component template

COMPONENT Car

OFFERS Vehicle, LuggageSpace

REQUIRES Road, Radio

(* implementation *)

END Car

Car

Vehicle

Luggage-

Space

Road

Radio

Component Instances

Declarations:
car1, car2: Car;

vehicle: ANY(Vehicle, LuggageSpace | Road, Radio)

Dynamic collection of component instances

• Index identifies an instance within the collection:

car[state: TEXT; number: INTEGER]: Car

• Possible instances:

car[“ZH”, 965231] car[“SO”, 11] …

any component template which

• offers at least Vehicle and LuggageSpace

• requires at most Road and Radio

Component Relations

• Hierarchical composition

• Interface connections

• Communication-based interactions

connection between

required & offered interface

encapsulated

sub-components

message communication

concurrent

components

Hierarchical Composition

COMPONENT Car …

VARIABLE

engine: Engine;

gearbox: GearBox;

wheels[n: INTEGER]: Wheel

BEGIN

NEW(engine); NEW(gearbox);

CONNECT(Gears(engine), gearbox);

FOR i := 1 TO N DO

NEW(wheel[i]);

CONNECT(Axle(wheel[i]), gearbox)

END

END Car
Vehicle

Luggage-

Space

Road

Radio

Car

Motor

Engine

engine gearbox

GearBox

Gears

Axle

…Wheel

wheel[1]

Wheel

wheel[N]
structure exclusively controlled

by surrounding component

variables as containers

for components

encapsulated

sub-components

Dynamic Composition

COMPONENT TrafficSimulation

VARIABLE

car[licenseNo: INTEGER]: Car;

road: RoadNetwork;

news: TrafficCenter

BEGIN

NEW(road); NEW(news);

REPEAT

id := GetNewLicenseNo();

NEW(car[id]);

CONNECT(Road(car[id]), road);

CONNECT(Radio(car[id], news)

UNTIL EnoughCars()

END TrafficSimulation

TrafficSimulation

RoadNetwork

Road

Car

Vehicle

... Car

Vehicle

TrafficCenter

Radio

number of cars only

known at runtime

Pointer-Free Structuring

• Interface connections versus references

– Interface connections only set by the surrounding component

– Explicitly declared incoming and outgoing connection points

• Hierarchy of component networks

• Hierarchical lifetimes

– Deletion of a component => automatic deletion of sub-components

– Explicit deletion of a single component => interface disconnection

• Safe memory management without garbage collector

DELETE(oldCar)
Car

TrafficCenter

GearBox

Engine

Car

oldCar

TrafficCenter

Car

GearBox

Engine

GearBox

Engine

Concurrency und Interactions

• Each component runs its own inner processes

• Components interact by message communication via
interfaces

communication

Car

Car

TrafficCenter

Radio

inner

process

all cars run concurrently and

act autonomously

separate communication

with each client

Communication

• Server maintains a statefull communication with each

client individually

• Sending and receiving messages according to a protocol

communication

protocol in EBNF

repetition

alternative

INTERFACE Radio

IN RequestNews(location: TEXT)

{

OUT Jam(roadNo: INTEGER)

|

OUT Clear(roadNo: TEXT)

}

OUT EndOfNews

END Radio

EndOfNews

client server

Car TrafficCenter

Radio

RequestNews

Jam
arbitrary

repetition
or

Clear

Component Implementation

COMPONENT TrafficCenter OFFERS Radio

IMPLEMENTATION Radio

BEGIN {SHARED}

?RequestNews(location);

FOREACH road x at location DO

IF x jammed THEN !Jam(x)

ELSE !Clear(x)

END

END;

!EndOfNews

END Radio

END TrafficNews

separate service

process per client

Car TrafficCenter

Radio

COMPONENT Car REQUIRES Radio

BEGIN

Radio!RequestNews(here);

REPEAT

IF Radio?Jam THEN

Radio?Jam(x) (* bypass x *)

ELSIF Radio?Clear THEN

Radio?Clear(x) (* can take x *)

END

UNTIL Radio?EndOfNews;

Radio?EndOfNews

END Car

receive message

receive test

send message

monitor synchronisation

only inside a component
compiler-checked

exclusion of races

Language Features

Motor

Propeller

Wheels

Guaranteed encapsulation Hierarchical networks

can require multiple

interfaces of the

same name

Plug-ins

transmission of

detached components

within messages

Car

EngineEngine

Symmetric polymorphism

AmphibianMobile

RoadVehicle

WaterVehicle

polymorphism

separate from

reuse

no

preferred

facet

Flexible reuse

selective

reuse by

composition

Interoperability

terminal component

implementable in

any language

connect inner to

outer interface

Runtime System

A small operating system for scalable efficient concurrency

• Light-weight processes

– Dynamic micro stacks

• Fast context switches

– Direct synchronous switches

– Economical preemption

• Inbuilt synchronization

– Protocol-based communication

– System-managed monitors

• Efficient memory management

– Hierarchical memory management

– No virtual memory management

Light-Weight Processes

Micro stacks

• Arbitrarily small stacks
– Size not fixed to page granularity

• Stack as a list of blocks of arbitrary size
– Dynamic extension and reduction

heap

stack block no separation between stack and heap

• Initial stack size computed by the compiler
– Communication instead of methods: less procedure calls

– Fix stack size for most of the components

Light-Weight Processes

• Dynamic stacks

– Extension on procedure call and reduction on procedure return

– Compiler inserts code at a procedure call and return

• System calls and interrupts
– On processor-associated system-stack (run to completion)

pars

locals

FP

SP

pars

locals

FP

SP

pars

locals

pars
SP

FP

pars

locals

FP

SP

pars

locals

Call

Return

Synchronous Context Switch

• System call via ordinary

procedure call

– No software interrupt

– No kernel protection

due to safe language

• Direct switch to target process

PROCEDURE Switch(target: Process);

BEGIN

running := REGISTER.FP;

REGISTER.FP := target

END Switch;

FP

SP

FP

running

ret PC

old FP
FP

target

ret PC

old FP

FP

SP

restore by

epilog

backup

by prolog

Economic Preemption

• Compiler inserts runtime checks in
machine code

– Checks in intervals of guaranteed
maximum time

– Checks initiate preemption on
expiration of the time interval

– Preemption only saves the registers in
use on the stack

– Process does not need unnecessary
space to backup unused registers

– Very fast checks (<0.1% overhead)

check in

each loop

check on

procedure call

check in sequence of

maximum runtime

IF Timeout THEN

Switch(ready)

END

register set by the

timer interrupt

call saves the

necessary registers

Scaling and Performance

Component OS Windows .NET Windows JVM Active Oberon

5,010,000 1,890 10,000 15,700

• Maximum number of threads / light weight-processes

Program (sec) Component OS C# Java Oberon AOS

ProducerCons. 16 19 130 60

Eratosthenes 1.8 6.8 4.6 5.8

TokenRing 2.1 22 22 18

4GB main memory, City simulation example

• Execution performance for concurrent programs

6 CPUs Intel Xeon 700MHz, C# & Java on Windows Server Enterprise Edition

Practical Application (TU Berlin)

Traffic simulation developed in the new language

• More natural modelling
– Self-active cars

• All cars drive autonomously and concurrently

• No explicit program loop moving the cars

• No explicit parking and waiting queues

– Virtual time

• Virtual time corresponds to the time in the simulated world

• All cars run with a synchronous virtual time

• Faster simulation

Program (min) Component OS Thread-based C# Sequential C++

TrafficSimulation

1,000 cars

0.04 33 140

TrafficSimulation

260,000 cars

76 out of memory 210

6 CPUs Intel Xeon 700MHz, C# on Windows Server Enterprise Edition

explicit discrete

event scheduler

too many threads

Conclusions

A new language for structured concurrent programming

• Conceptual advantages

– Hierarchically controlled structures instead of references

– Guaranteed hierarchical encapsulation

– First-class structured concurrency (race-free)

• Technical advantages

– High scalability in the number of parallel processes

– High execution performance for concurrent programs

– No garbage collector needed for safe memory management

• Practical applicability demonstrated by traffic simulation

– More natural simulation (self-active cars running in virtual time)

– Faster than other concurrent and sequential simulations

– Other concurrent programs have been implemented and run faster

Live Demonstration

Producer Consumer

Token Ring

Traffic Simulation

