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Task Parallelization as a Service

 Integrate remote processor power locally

□ Offer massive parallelization via a service

□ E.g. a many-core cluster behind the service

 Easy-to-use and transparent for programmers

□ Same programming model as for local cores

□ No explicit/visible separation of client/server code
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.NET Program

 Program parallel tasks in .NET (shared memory)

 Automatically send them to the cloud for execution

 Cloud side uses for example a MS HPC cluster

Parallel 
Tasks

.NET Shared Memory Task Distribution

.NET Runtime

Runtime Extension Task 
Parallelization

Service

HPC Cluster

Node

Node

Node

Node



Classical .NET Task Parallelization

Factorize multiple numbers

var taskList = new List<Task<long>>();
foreach (var number in inputs) {
var task = Task.Factory.StartNew(

() => _Factorize(number)
);
taskList.Add(task);

}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long _Factorize(long number) {
for (long k = 2; k <= Math.Sqrt(number); k++) {
if (number % k == 0) { return k; }

}
return number; 
}

Start TPL 
task

Await task end

Task delegate 
(lambda)



New Distributed Task Parallelization

var distribution = new Distribution(ServiceUri, Authorization);

var taskList = new List<DistributedTask<long>>();
foreach (var number in inputs) {
var task = DistributedTask.New(

() => _Factorize(number)
);
taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Specify service

Create task

Start multiple tasks 
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Data Parallelization

Parallel.For(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

Classical .NET parallelization

New distributed task parallelization



Distributed Tasks

 Nearly identical to TPL

□ Only import of a library: no compile step

 Bundled task starts

□ Minimizing network roundtrips

 Task as .NET delegate/lambda

□ Standard shared memory programming model

□ Tasks can issue side effects (variable changes)

 Tasks must be independent

□ No synchronization => No shared mutable state

□ Embarrassingly parallel => simple and efficient



Runtime System
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Task Serialization

 Potentially executable task code

□ Conservative code analysis

• Starting from task delegate

• Directly and indirectly callable methods

• Potentially used classes and fields

 Potentially accessed task data

□ Partial heap snapshot

• Graph of reachable objects with accessible fields

• Accessible static fields / constants

• Start does not need to block for serialization 
(because of task independence)



Task Updates/Results

 Delivered by the server on task completion

□ Task delegate result value

□ Changes in objects and static fields

• Field updates

• Array element updates

□ New allocated objects

 In-place updates at the client side

□ On the corresponding objects of the input snapshot

• Correct because of task independence

□ Partial data race detection

• Write/write conflicts between distributed tasks



Performance Scaling

Number factorizations (64 bit, random prime factors around 2^32)

Factorize a set of predefined numbers; Minimum of 3 measurements; 
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Performance Cost Breakdown

Factorizations (10 numbers)
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Performance Comparisons

 Three more examples (runtimes in seconds)

Minimum of 3 measurements; Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Parallel Speedup

 Depends on #used cores (factorization)

Factorization of 100 predefined input numbers
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Performance Discussion

 High parallel speedup possible

 But with inherent overheads

□ Network transmission (throughput + delay)

□ Task serialization / deserialization

□ Dispatching of the HPC cluster job

 Parallelization needs to compensate overheads

□ Compute-intense tasks, relatively small data amount

□ Depending on network / server settings

=> Runtime system itself works efficiently



Conclusion

 Runtime for seamless distributed task parallelization

□ Principally same programming model as for local tasks

□ Illusion of shared memory models despite distribution

□ No explicit design of remote code 

□ No explicit serialization or distribution logic

□ Write/write race detection as extra safeguard

 Future work

□ Task dependencies (chaining)

□ More features, debugging, monitoring

http://concurrency.ch/Projects/TaskParallelism

http://concurrency.ch/Projects/TaskParallelism

