
.NET Task Parallelization as A Service
A Runtime System for Automatic Shared Task Distribution

Luc Bläser
HSR University of Applied Sciences Rapperswil

MULTIPROG2015 @ Hipeac
20 April 2015

Levels of Parallelization

Multi-core Multi-
processor

Computer
Network

Processor

Core Core

Core Core

Computer

CPU

CPU

GPU

Phi

Computer Computer

Computer Computer

2-16 cores Arbitrary, e.g.
1000 core cluster

Particular distributed
programming

Inbuilt support in
programming language

GPU: 512 cores
Xeon Phi: 61 cores

Too seldom used

Task Parallelization as a Service

 Integrate remote processor power locally

□ Offer massive parallelization via a service

□ E.g. a many-core cluster behind the service

 Easy-to-use and transparent for programmers

□ Same programming model as for local cores

□ No explicit/visible separation of client/server code

Client Compute

Node

Compute

Node

Compute

Node

Cluster

Cloud

.NET Program

 Program parallel tasks in .NET (shared memory)

 Automatically send them to the cloud for execution

 Cloud side uses for example a MS HPC cluster

Parallel
Tasks

.NET Shared Memory Task Distribution

.NET Runtime

Runtime Extension Task
Parallelization

Service

HPC Cluster

Node

Node

Node

Node

Classical .NET Task Parallelization

Factorize multiple numbers

var taskList = new List<Task<long>>();
foreach (var number in inputs) {
var task = Task.Factory.StartNew(

() => _Factorize(number)
);
taskList.Add(task);

}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long _Factorize(long number) {
for (long k = 2; k <= Math.Sqrt(number); k++) {
if (number % k == 0) { return k; }

}
return number;
}

Start TPL
task

Await task end

Task delegate
(lambda)

New Distributed Task Parallelization

var distribution = new Distribution(ServiceUri, Authorization);

var taskList = new List<DistributedTask<long>>();
foreach (var number in inputs) {
var task = DistributedTask.New(

() => _Factorize(number)
);
taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Specify service

Create task

Start multiple tasks
at once

Data Parallelization

Parallel.For(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

Classical .NET parallelization

New distributed task parallelization

Distributed Tasks

 Nearly identical to TPL

□ Only import of a library: no compile step

 Bundled task starts

□ Minimizing network roundtrips

 Task as .NET delegate/lambda

□ Standard shared memory programming model

□ Tasks can issue side effects (variable changes)

 Tasks must be independent

□ No synchronization => No shared mutable state

□ Embarrassingly parallel => simple and efficient

Runtime System

Distributed
Tasks

Distributed Task Client Runtime

Task Parallelization Service (HTTPS)

Task Code
& Data

2. Start tasks

1. Serialize task code
and data

6. Serialize side-effect
changes and results

4. Deserialize code
and data

5. Generate code and
execute tasks in parallel

Results &
Changes

3. Distribute to
nodes

8. Notify task
completion

9. Update changes
in memory

Distributed Task Server Runtime

7. Aggregate task
end data

Task Serialization

 Potentially executable task code

□ Conservative code analysis

• Starting from task delegate

• Directly and indirectly callable methods

• Potentially used classes and fields

 Potentially accessed task data

□ Partial heap snapshot

• Graph of reachable objects with accessible fields

• Accessible static fields / constants

• Start does not need to block for serialization
(because of task independence)

Task Updates/Results

 Delivered by the server on task completion

□ Task delegate result value

□ Changes in objects and static fields

• Field updates

• Array element updates

□ New allocated objects

 In-place updates at the client side

□ On the corresponding objects of the input snapshot

• Correct because of task independence

□ Partial data race detection

• Write/write conflicts between distributed tasks

Performance Scaling

Number factorizations (64 bit, random prime factors around 2^32)

Factorize a set of predefined numbers; Minimum of 3 measurements;
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e

 (
se

c)

Input set size

Sequential

Local 2 core

Distributed

Performance Cost Breakdown

Factorizations (10 numbers)

0.3

18.4

0.3
1.9

Task Serialization Node Execution

HPC Dispatch Network Transfer

Runtime (sec)

Performance Comparisons

 Three more examples (runtimes in seconds)

Minimum of 3 measurements; Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

5

10

15

20

25

30

35

40

Mandelbrot
(10000 x 1000 pixels)

0

5

10

15

20

Primes Scanner
(range 107)

0

500

1000

1500

2000

2500

Knight Tours
(6 x 6 board)

Distributed Local 2 core Sequential

~0.1 MB data traffic~0.1 MB data traffic1.25 MB data traffic

Parallel Speedup

 Depends on #used cores (factorization)

Factorization of 100 predefined input numbers
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

100

200

300

400

500

600

700

12 24 36 48 60 72 84 96

R
u

n
ti

m
e

 (
se

c)

Used Cores

Performance Discussion

 High parallel speedup possible

 But with inherent overheads

□ Network transmission (throughput + delay)

□ Task serialization / deserialization

□ Dispatching of the HPC cluster job

 Parallelization needs to compensate overheads

□ Compute-intense tasks, relatively small data amount

□ Depending on network / server settings

=> Runtime system itself works efficiently

Conclusion

 Runtime for seamless distributed task parallelization

□ Principally same programming model as for local tasks

□ Illusion of shared memory models despite distribution

□ No explicit design of remote code

□ No explicit serialization or distribution logic

□ Write/write race detection as extra safeguard

 Future work

□ Task dependencies (chaining)

□ More features, debugging, monitoring

http://concurrency.ch/Projects/TaskParallelism

http://concurrency.ch/Projects/TaskParallelism

