
A High-Performance Operating System

for Structured Concurrent Programs

Luc Bläser

ETH Zurich, Switzerland

blaeser@inf.ethz.ch

PLOS’07, Stevenson WA, USA, 18 Oct. 2007

State of the Art

Main problems of object-oriented languages:

• References

– Arbitrary object interlinking => Unstructured

dependencies

– No hierarchical composition => Objects can not

encapsulate (dynamic) structures of other objects

• Threads

– Concurrency only added with hindsight to procedural

programming model

– Threads operate on arbitrary objects via method calls

=> error-prone

New Approaches

Trends towards improved programming models:

• First-class concurrency
– Concurrency as primary language construct in the

form of self-active objects / components

– Message communication instead of blocking method
calls

– Examples: Active C#, Zonnon, Composita

• Pointer-free structuring
– Hierarchical composition instead of flat object graph

– Hierarchically controlled interface wiring

– Examples: ArchJava, Classages, Composita

 New requirements for modern runtime systems

Modern Runtime Systems

Requirements:

• Highly-scalable concurrency
– Support of a very high number of light-weighted

processes

• High-performance concurrency
– Efficient execution of highly-interactive concurrent

programs

• Efficient memory management
– Efficient and safe memory management exploiting

improved program structures

• Liberation from artifacts
– Abandon system features that are no longer needed

for a modern programming model

Example of Structured Concurrency

The Component Language

• Components as general abstraction units

• Strict encapsulation

– External dependencies only via explicit interfaces allowed

• A component can offer and require interfaces

– offered interfaces represent own factes of the component

– required interfaces are to be offered by other components

• Multi-instantiation from component templates

BoundedBuffer

Data-

Acceptor

Data-

Source

COMPONENT BoundedBuffer

OFFERS DataAcceptor,

DataSource;

END BoundedBuffer;

COMPONENT Consumer

REQUIRES DataSource;

END Consumer;

COMPONENT Producer

REQUIRES DataAcceptor;

END Producer;

Producer

Data-

Acceptor

Consumer

Data-

Source

Component Relations

• Hierarchical composition

• Interface connections

• Communication-based interactions

connection between required &

offered interface

encapsulated

sub-components

bidirectional communication

concurrent

components

Hierarchical Structuring

COMPONENT Simulation

VARIABLE

buffer: BoundedBuffer;

producer[i: INTEGER]: Producer;

consumer[k: INTEGER]: Consumer;

BEGIN

NEW(buffer);

FOR i := 1 TO user input N DO

NEW(producer[i]); CONNECT(DataAcceptor(producer[i], buffer)

END;

FOR k := 1 TO user input M DO

NEW(consumer[i]); CONNECT(DataSource(consumer[i], buffer)

END

END Simulation;

containers for

components

dynamic collection dynamic construction

Simulation

Bounded-

Buffer

Data-

Acceptor
Producer

Producer

…

producer[1]

buffer

producer[N]

Data-

Source
Consumer

Consumer

…

consumer[1]

consumer[M]

network structure

exclusively controlled by

surrounding component

Message Communication

Producer

intrinsic process communication

communication

protocol in EBNF

INTERFACE DataAcceptor;

{ IN Element(x: INTEGER) }

IN Finished

END DataAcceptor;

COMPONENT Producer

REQUIRES DataAcceptor;

BEGIN

FOR i := 1 TO N DO

DataAcceptor!Element(i)

END;

DataAcceptor!Finished

END Producer;

COMPONENT BoundedBuffer

OFFERS DataAcceptor;

IMPLEMENTATION DataAcceptor;

BEGIN {EXCLUSIVE}

WHILE ?Element DO

AWAIT(empty);

?Element(x); empty := FALSE

END;

?Finished

END DataAcceptor;

END BoundedBuffer;

separate service

process per client

monitor

synchronization

inside component

Bounded

Buffer

maintains separate

communication with each client

Component Operating System

High-performance runtime system for structured concurrent

programs of the component language

Highlights:

• Light-weighted processes

– Micro stacks with size that can dynamically grow and shrink

– Enables very high number of processes

• Fast context switches

– Direct synchronous context switches

– Low-cost and efficient preemption based on code-instrumentation

• Safe and efficient memory management

– Garbage collection no longer needed due to hierarchical structures

– Virtual memory management not needed

Stack Management

• Arbitrarily small stack sizes (not fixed to pages)

• Uniformly represented as heap blocks

• No method calls
– Stacks only grow due to component-internal procedures

• System calls run on processor-associated system stacks

• Dynamic growing and shrinking
– Compiler-inserted checks at procedure entry and exit

ESP

EBP

locals locals locals

pars

locals

locals

pars

EBP

ESP

EBP

ESP

ESP

EBP

pars pars pars pars

caller state

stack extension callee state

Process Management

• Direct context switches within
monitors and communication

• Software-controlled preemption
– Compiler automatically inserts

checks in the machine code

– Checks are executed in guaranteed
small time intervals

– Checks initiate preemption after a
defined time interval

– No cooperative multi-task
programming

• Save only the necessary
registers on preemption
– Mostly no temporary registers used

between statements

– Economize extensive register
backup space for each process

– Runtime overhead of instrumented
checks about 0.5%

Check in each

loop body

Check at each

procedure entry

Check after sequence of

maximum runtime

CMP EDI, 0

JL continue

save used registers

CALL Preempt

restore used registers

continue:

register reserved for

preemption signal

Communication Channel

• Bounded FIFO message buffer for each communication

• Automatic communication start and termination
– Start by the first message command

– Termination on the last protocol transition or on component
finalization

• Dynamic protocol monitoring

INTERFACE Hotel

{

IN CheckIn

(

OUT AssignedRoom

IN CheckOut OUT Bill

[IN DirectPayment]

|

OUT FullyBooked

)

}

END Hotel

CheckIn

FullyBooked

FINISH

Assigned

Room

CheckOut

Direct

Payment

Bill

CheckIn

FINISH

Compiler-generated

state machine

Memory Management

• Hierarchy of component networks
– Arbitrary n-to-m component networks within each component

possible

– Interface connections solely set by the surrounding component

• Hierarchical lifetime dependencies
– Deletion of a component => automatic deletion of the sub-

components

– Explicit deletion of a component => outer interfaces of the
component are safely disconnected

=> Safe memory management without garbage collection

DELETE(house)

PowerPlant

House

house

River
Garage

Floor

PowerPlant

River

Scalability und Performance

Component OS C# Java Oberon AOS

5’010’000 1’890 10’000 15’700

• Maximum number of processes (threads)

Program (in sec) Component OS C# Java Oberon AOS

City 0.24 0.66 440 4.1

ProducerCons. 16 19 130 60

Eratosthenes 1.8 6.8 4.6 5.8

News 2.0 3.5 3.9 4.6

TokenRing 2.1 22 22 18

Mandelbrot 0.88 0.43 0.39 0.6

TrafficSimulation 0.05 33 - -

4GB main memory, City Benchmark

• Execution performance

6 CPUs Intel Xeon 700MHz, C# & Java Windows Server Enterprise Edition

C#, Java, AOS: analogous programs with methods instead of communication

Predictability without Garbage Collection

0

10

20

30

40

50

60

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481

Oberon AOS

Component OS

500 subsequent executions of the Small City program (in ms)

GC Peaks

No GC needed

Conclusions

A new efficient runtime system for a modern structured

concurrent programming language

• Technical benefits

– High scalability in the number of processes

– Fast execution of concurrent programs

– No garbage collection needed

– Customized and optimized for structured concurrency

• Conceptual benefits

– Hierarchical controlled structured and guaranteed encapsulation

– Inherent concurrency with communication-based interactions

• Practical application in traffic simulation (TU Berlin)

• Project Website: http://www.jg.inf.ethz.ch/components

