Alea Reactive Dataflow
GPU Parallelization Made Simple

Luc Blaser
IFS Institute for Software, HSR Rapperswil

D. Egloff, O. Knobel, P. Kramer, X. Zhang, D. Fabian
(Joint HSR and QuantAlea Zurich)

M HSR [ool § s 7 REBLS'14
|| el L %0 sormware QuantAlea ¥ 21 Oct 2014

FHO Fachhochschule Ostschweiz

GPU Programming Today

5760 Cores

= Massive parallel power

0 Very specific pattern: vector-parallelism
= High obstacles

0 Particular algorithms needed

0 Machine-centric programming models

0 Poor language and runtime integration

" Good excuses against it - unfortunately

0 Too difficult, costly, error-prone, marginal benefit

Our Goal

GPU parallel programming for (almost) everyone

= Radical simplification
0 No GPU experience required
0 Fast development
0 High performance comes automatically
0 Guaranteed memory safety

= Broad community
0 .NET in general: CH#, F#, VB etc.
0 Based on Alea cuBase F# runtime

Alea Dataflow Programming Model

= Dataflow

0 Graph of operations

0 Data propagated through graph
= Reactive

0 Feed input in arbitrary intervals
0 Listen for asynchronous output

The Descriptive Power

" Program is purely descriptive
0 What, not how
= Efficient execution behind the scenes
0 Vector-parallel operations
0 Stream operations on GPU
0 Minimize memory copying
0 Hybrid multi-platform scheduling
0 Tune degree of parallelization

O ...

Operation

= Unit of calculation (typically vector-parallel)
" |[nput and output ports

" Port = stream of typed data

= Consumes input, produces output

Input: T[] Left: T[,] Right: T[,] Input: Tuple<T, U>

MatrixProduct

Output: U[] Output: T[,] First: T Second: U

Graph

Random

Pairing

Pair<float>[]

Average

var randoms = new Random<float>(0, 1);
var coordinates = new Pairing<float>();
var inUnitCircle = new Map<Pair<float>, float>(
p => p.Left * p.Left + p.Right * p.Right <=1
? 1f : of
)

var average = new Average<float>();

randoms.Output.ConnectTo(coordinates.Input);
coordinates.Output.ConnectTo(inUnitCircle.Input);
inUnitCircle.Output.ConnectTo(average.Input);

Dataflow

= Send data to input port
= Receive from output port
= All asynchronous

average.Output.OnReceive(x =>
Console.WriteLine(4 * x));

random. Input.Send(1000);
random.Input.Send(1000000);

1000

1000000

Random

Pairing

Average

Short Fluent Notation

var randoms = new Random<float>(0, 1);
randoms
.Pairing()
.Map(p => p.Left * p.Left + p.Right * p.Right <=1 ? 1f : of)
.Average()
.OnReceive(x => Console.WritelLine(4 * x));

randoms.Send(100) ;
randoms.Send(100000) ;

Algebraic Computation

var product = new MatrixProduct<float>();
var sum = new MatrixSum<float>();

MatrixProduct product.Output.ConnectTo(sum.Left);

A B C
| | |
| ! !
| |

I
|
!
|
!
|
I sum.Output.OnReceive(Console.WritelLine);
|

product.Left.Send(A);

product.Right.Send(B);

sum.Right.Send(C);

Iterative Computation

S
SN

(A, b|)

MatrixVector
Product

Comparison

Switch

bir1 = A - b; (until by, = by)

var source = new Splitter<double[,], double[]>();
var product =
source.First.Multiply(source.Second);
var steady =
product.Compare(source.Second, fun x y ->
Math.Abs(x - y) < 1E-6);
var next = source.First.Merge(product);
var branch = steady.Switch(next);
branch.False.ConnectTo(source.Input);

branch.True.OnReceive(Console.WritelLine)
source.Send(new Tuple<double[,], double>(A, b9));

Current Scheduler

Operation implement COPY |
GPU and/or CPU

GPU operations
combined to stream

Memory copy only
when needed COPY

-

-

A"

Host scheduling with
NET TPL

Automatic free memory
management

CPU

COPY

Operation Catalogue

= Prefabricated generic operations
0 Switch, Merger, Splitter, Comparison
0 Map, Reduction, Average, Pairing

0 Random, MatrixProduct, MatrixSum, MatrixVectorProduct,
VectorSum, ScalarProduct

0 More to come...
= Custom operations can be added

" Good performance
0 Nearly as fast as native C CUDA: overhead about 10%
* Performance depends on operation implementation

* Small overhead (cross-compilation, managed to
unmanaged interop, scheduler)

Related Works

= Rx.NET / TPL Dataflow

0 Single input and output port
0 Not for GPU

= Xcelerit
0 Not reactive: single flow per graph
0 No generic operations with functors

MSR PTasks / Dandelion

0 Synchronous receive, on C++, no generic operations
0 .NET LINQ integration (pull instead of push)

= Fastflow

0 Not reactive (sync run of the graph)
0 More low-level C++ tasks, no functors

Nikola

0 Implicit dataflow described by functions
0 Limited set of operations

Conclusions

= Simple but powerful GPU parallelization in .NET
0 No low-level GPU artefacts
0 Fast and condensed problem formulation
0 Efficient and safe execution by the scheduler

= The descriptive paradigm is the key
0 Reactive makes it very general: cycles, infinite etc.
0O Practical suitability depends on operations

= Future directions
0 Advanced schedulers: multi GPUs, cluster, optimizations

0O Larger operation catalogue, optimized operations

