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Seamless Distributed Task Parallelization

 Integrate remote processor power locally

□ Offer massive parallelization via a service

□ E.g. a many-core cluster behind the service

 Easy-to-use and transparent for programmers

□ Same programming model as for local cores

□ No explicit/visible separation of client/server code
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.NET Program

 Program parallel tasks in .NET (shared memory)

 Automatically send them to the cloud for execution

 Cloud side uses for example a MS HPC cluster
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Overview

 Programming model

 Runtime system

 Experimental results

 Conclusions



Classical .NET Task Parallelization

Factorize multiple numbers

var taskList = new List<Task<long>>();
foreach (var number in inputs) {
var task = Task.Factory.StartNew(

() => _Factorize(number)
);
taskList.Add(task);

}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long _Factorize(long number) {
for (long k = 2; k <= Math.Sqrt(number); k++) {
if (number % k == 0) { return k; }

}
return number; 
}

Start TPL 
task

Await task end

Task delegate 
(lambda)



New Cloud Task Parallelization

var distribution = new Distribution(ServiceUri, Authorization);

var taskList = new List<DistributedTask<long>>();
foreach (var number in inputs) {
var task = DistributedTask.New(

() => _Factorize(number)
);
taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Specify service

Create task

Start multiple tasks 
at once

Analogous to TPL

Reference library: HSR.CloudTaskParallelism.Client.Runtime



Data Parallelization

Parallel.For(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

Classical .NET parallelization

New cloud task parallelization



Distributed Tasks

 Nearly identical to TPL

□ Only import of a library: no compile step

 Bundled task starts

□ Minimizing network roundtrips

 Task as .NET delegate/lambda

□ Standard shared memory programming model

 Tasks must be independent

□ No shared mutable state



Task Independence

 Keeping it simple but efficient 

□ Arbitrary distribution of tasks is feasible

□ Effortless parallel scalability

 How restrictive is it in practice?

□ Parallel decomposition is about minimizing synchronization 
– also for local tasks

□ Synchronization can often be avoided by different design, 
e.g. sequential post-phase for aggregating partial results

□ Programmer gains control over scalability, not leaving it to 
runtime heuristics/analysis



Distributed Task API

 Start of distributed tasks
□ distribution.Start(taskSet)

 Await task termination
□ distribution.Await(taskSet)

 Start tasks with wait barrier
□ distribution.Invoke(taskSet)

 ParallelFor, ParallelForEach



Runtime System

Distributed
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Distributed Task Client Runtime

Task Parallelization Service (HTTPS)
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Task Serialization

 Potentially executable task code

□ Conservative code analysis

• Starting from task delegate

• Directly and indirectly callable methods

• Potentially used classes and fields

 Potentially accessed task data

□ Partial heap snapshot

• Graph of reachable objects with accessible fields

• Accessible static fields / constants

• Consistency because of task independence



Task Updates/Results

 Delivered by the server on task completion

□ Task delegate result value

□ Changes in objects and static fields

• Field updates

• Array element updates

□ New allocated objects

 In-place updates at the client side

□ On the corresponding objects of the input snapshot

□ Partial data race detection

• Write/write conflicts between distributed tasks



Performance Scaling

Prime factorization

Factorize a set of predefined numbers; Minimum of 3 measurements; 
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Performance Cost Breakdown

Prime factorization (10 numbers)
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Performance Comparisons

 Three more examples (runtimes in seconds)

Minimum of 3 measurements; Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Parallel Speedup

 Depending on number of used cores in cluster

Factorization of 100 predefined input numbers
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay
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Performance Discussion

 Speedup
□ High parallelization by many general-purpose cores (CPUs)

 Overheads
□ Transmission between client and backend

• Throughput (data amount) und latency (network delay)

□ Task serialization / deserialization

□ Dispatching of the HPC cluster job

 Parallelization needs to compensate overheads
□ Many Tasks

□ Compute-intense Tasks

□ Tasks with relatively small data amount

□ Depending on network / server settings



Conclusion

 Runtime for seamless distributed task parallelization

□ Principally same programming model as for local tasks

□ Illusion of shared memory models despite distribution

□ No explicit design of remote code 

□ No explicit serialization (wrapping/marking/attributing 
code for distribution-awareness)

□ No explicit distribution or communication logic

□ Write/write race detection as extra safeguard

http://concurrency.ch/Projects/TaskParallelism

http://concurrency.ch/Projects/TaskParallelism

