
.NET Task Parallelization in the Cloud
Runtime Support for Seamless Distribution of Shared Memory Parallel Tasks

Luc Bläser
HSR University of Applied Sciences Rapperswil

SFMA’14 @ Eurosys
13 April 2014

Levels of Parallelization

Multi-core Multi-
processor

Computer
Network

Processor

Core Core

Core Core

Computer

CPU

CPU

GPU

Phi

Computer Computer

Computer Computer

2-16 cores GPU: 512 cores
Xeon Phi: 61 cores

Arbitrary, e.g.
1000 core cluster

Particular distributed
programming

Inbuilt support in
programming language

Seamless Distributed Task Parallelization

 Integrate remote processor power locally

□ Offer massive parallelization via a service

□ E.g. a many-core cluster behind the service

 Easy-to-use and transparent for programmers

□ Same programming model as for local cores

□ No explicit/visible separation of client/server code

Client Compute

Node

Compute

Node

Compute

Node

Cluster

Cloud

.NET Program

 Program parallel tasks in .NET (shared memory)

 Automatically send them to the cloud for execution

 Cloud side uses for example a MS HPC cluster

Parallel
Tasks

.NET Task Parallelization in the Cloud

.NET Runtime

Runtime Extension Task
Parallelization

Service

HPC Cluster

Node

Node

Node

Node

Overview

 Programming model

 Runtime system

 Experimental results

 Conclusions

Classical .NET Task Parallelization

Factorize multiple numbers

var taskList = new List<Task<long>>();
foreach (var number in inputs) {
var task = Task.Factory.StartNew(

() => _Factorize(number)
);
taskList.Add(task);

}

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

long _Factorize(long number) {
for (long k = 2; k <= Math.Sqrt(number); k++) {
if (number % k == 0) { return k; }

}
return number;
}

Start TPL
task

Await task end

Task delegate
(lambda)

New Cloud Task Parallelization

var distribution = new Distribution(ServiceUri, Authorization);

var taskList = new List<DistributedTask<long>>();
foreach (var number in inputs) {
var task = DistributedTask.New(

() => _Factorize(number)
);
taskList.Add(task);

}

distribution.Start(taskList);

foreach (var task in taskList) {
Console.WriteLine(task.Result);

}

Specify service

Create task

Start multiple tasks
at once

Analogous to TPL

Reference library: HSR.CloudTaskParallelism.Client.Runtime

Data Parallelization

Parallel.For(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = _Factorize(inputs[i]);

});

Classical .NET parallelization

New cloud task parallelization

Distributed Tasks

 Nearly identical to TPL

□ Only import of a library: no compile step

 Bundled task starts

□ Minimizing network roundtrips

 Task as .NET delegate/lambda

□ Standard shared memory programming model

 Tasks must be independent

□ No shared mutable state

Task Independence

 Keeping it simple but efficient

□ Arbitrary distribution of tasks is feasible

□ Effortless parallel scalability

 How restrictive is it in practice?

□ Parallel decomposition is about minimizing synchronization
– also for local tasks

□ Synchronization can often be avoided by different design,
e.g. sequential post-phase for aggregating partial results

□ Programmer gains control over scalability, not leaving it to
runtime heuristics/analysis

Distributed Task API

 Start of distributed tasks
□ distribution.Start(taskSet)

 Await task termination
□ distribution.Await(taskSet)

 Start tasks with wait barrier
□ distribution.Invoke(taskSet)

 ParallelFor, ParallelForEach

Runtime System

Distributed
Tasks

Distributed Task Client Runtime

Task Parallelization Service (HTTPS)

Task Code
& Data

2. Start tasks

1. Serialize task code
and data

6. Serialize side-effect
changes and results

4. Deserialize code
and data

5. Generate code and
execute tasks in parallel

Results &
Changes

3. Distribute to
nodes

8. Notify task
completion

9. Update changes
in memory

Distributed Task Server Runtime

7. Aggregate task
end data

Task Serialization

 Potentially executable task code

□ Conservative code analysis

• Starting from task delegate

• Directly and indirectly callable methods

• Potentially used classes and fields

 Potentially accessed task data

□ Partial heap snapshot

• Graph of reachable objects with accessible fields

• Accessible static fields / constants

• Consistency because of task independence

Task Updates/Results

 Delivered by the server on task completion

□ Task delegate result value

□ Changes in objects and static fields

• Field updates

• Array element updates

□ New allocated objects

 In-place updates at the client side

□ On the corresponding objects of the input snapshot

□ Partial data race detection

• Write/write conflicts between distributed tasks

Performance Scaling

Prime factorization

Factorize a set of predefined numbers; Minimum of 3 measurements;
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

R
u

n
ti

m
e

 (
se

c)

Input set size

Sequential

Local 2 core

Distributed

Performance Cost Breakdown

Prime factorization (10 numbers)

0.3

18.4

0.3
1.9

Task Serialization Node Execution

HPC Dispatch Network Transfer

Runtime (sec)

Performance Comparisons

 Three more examples (runtimes in seconds)

Minimum of 3 measurements; Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

5

10

15

20

25

30

35

40

Mandelbrot
(10000 x 1000 pixels)

0

5

10

15

20

Primes Scanner
(range 107)

0

500

1000

1500

2000

2500

Knight Tours
(6 x 6 board)

Distributed Local 2 core Sequential

Parallel Speedup

 Depending on number of used cores in cluster

Factorization of 100 predefined input numbers
Client Intel 2 Core, 2.9 GHz; Service Intel 2 Core, 2.9 GHz; 64 Bit, with Compiler Optimization
Cluster MS HPC 2012, 32 Nodes Intel Xeon 12 Core 2.6GHz; 100MBit/s network, 1ms delay

0

100

200

300

400

500

600

700

12 24 36 48 60 72 84 96

R
u

n
ti

m
e

 (
se

c)

Cores

Performance Discussion

 Speedup
□ High parallelization by many general-purpose cores (CPUs)

 Overheads
□ Transmission between client and backend

• Throughput (data amount) und latency (network delay)

□ Task serialization / deserialization

□ Dispatching of the HPC cluster job

 Parallelization needs to compensate overheads
□ Many Tasks

□ Compute-intense Tasks

□ Tasks with relatively small data amount

□ Depending on network / server settings

Conclusion

 Runtime for seamless distributed task parallelization

□ Principally same programming model as for local tasks

□ Illusion of shared memory models despite distribution

□ No explicit design of remote code

□ No explicit serialization (wrapping/marking/attributing
code for distribution-awareness)

□ No explicit distribution or communication logic

□ Write/write race detection as extra safeguard

http://concurrency.ch/Projects/TaskParallelism

http://concurrency.ch/Projects/TaskParallelism

