
The Various Faces of the 
.NET Task Parallel Library

Luc Bläser
Hochschule für Technik Rapperswil

Multicore@Siemens 2015
5 Feb 2015, Nuremberg



The .NET Task Parallel Library (TPL)

 State of the art in .NET parallel programming

□ Replaces Most Explicit Multi-Threading

□ Introduced in .NET 4, extended 4.5

 Known for high performance & generality

□ Different programming abstractions

□ On a common backbone

free icon from wikimedia.org



TPL Appears in Various Faces

Task Parallelization 

Data Parallelism
Asynchronous 
Programming

Thread Pool

- Explicit thread pool usage

- Statement independencies
- LINQ independencies

- Asynchronous methods
- Reactive data flows

Goal: Multi-Core Goal: Non-Blocking



Thread Pool Principle

 Task implement potentially parallel work

 Thread pool = limited number of worker threads

 Tasks are queued, threads fetch and execute tasks

Task

Task

Task

task queue

Task Task

worker threads

thread pool

#worker threads = #processors + #I/O calls



The Thread Pool Advantage

 Modell large degree of parallelization

□ Many tasks = cheap passive objects

 Pay low threading costs

□ Only few recycled threads

 Free lunch with task-modelled programs

□ Automatically faster with more cores



And the Downside?

 Tasks must not have mutual wait dependencies

□ Otherwise deadlock (if thread pool amount is fixed)

□ Thread injection (TPL increases number of threads slowly)

□ Exception: Nested tasks

Task

Task

Task

task queue

Task

Task

thread pool

wait 
dependency

wait 
dependency

task waits on condition to be 
fulfilled by other task



TPL’s Work Stealing Thread Pool

 Reducing contention with local queues

 Number of threads adjusted to task throughput

Global 
Task 

Queue

Task

Local 
Task 

Queue

Task

Task

Local 
Task 

Queue

(empty)

Thread 1 Thread 2

start 
new task

distribute FIFO

next FIFO

new 
nested

redistribute
FIFO

© figure from Jürg Gutknecht, ETH Zürich



Structure of Talk

1) Task Parallelization

2) Data Parallelism

3) Asynchronous Programming



1) Task Parallelization

 Explicit handling of thread pool tasks

□ Elementary support for higher abstraction level

□ Ideal for more complex pattern than higher levels

var task = Task.Factory.StartNew(() => {
// task implementation
return …;

});
…
…
var result = task.Result;

Implicit task.Wait()

Caller

Start

TPL
worker
thread

Wait

(returns)
task end



Watch Out for Concurrency Errors

 As immanent as in multi-threading

□ Tasks may run concurrently (by different threads)

for (int i = 0; i < 100; i++) {
Task.Factory.StartNew(() => {
Console.WriteLine(i);

});
}

Data race = formal error

 Avoid 
□ Race conditions (low-level and high-level)

□ Deadlocks (incl. livelocks)

□ Starvation (fairness issues)



Different Styles (1)

 Start & Join

 Nested tasks

var task1 = Task.Factory.StartNew(CountLeft);
var task2 = Task.Factory.StartNew(CountRight);
…
Task.WaitAll(task1, task2);
// equivalent to task1.Wait(); task2.Wait();

var outerTask = Task.Factory.StartNew(() => {
var innerTask = Task.Factory.StartNew(() => { … });
…
innerTask.Wait();

}

Start

Wait

Start

Wait



Different Styles (2)

 Chaining

 Fire & Forget

var firstTask = Task.Factory.StartNew(…);
var secondTask = new Task(…);
firstTask.ContinueWith(secondTask);

Task.Factory.StartNew(() => {
…

}

Start

Start



Exception Handling

 Unhandled exception in task => task is faulted

□ Propagated to caller of Wait() or Result

□ Otherwise ignored (default since .NET 4.5)

• TaskScheduler.UnobservedTaskException

□ Not automatically propagated along task chain

• Successor task should call Wait()/Result of predecessor



Caution with Fire & Forget

 Exceptions in task are ignored (by default)

 Application may stop before task is completed

□ Thread pool uses background threads

Task.Factory.StartNew(() => {
…
throw e;

} ignored

Task.Factory.StartNew(() => {
…

…
}

sudden termination



2) Data Parallelism

 Declarative: Exploit independencies in program code

□ Can be parallelized, but do not necessarily have to

□ Goal: Acceleration by multi-cores

2a) Statement-Level

2b) LINQ Expressions



Statement-Level Parallelism

 Parallel Statement Blocks

□ Independent statements

 Parallel Loop Blocks

□ Independent loop steps

void MergeSort(l, r) {
long m = (l + r)/2;
MergeSort(l, m);
MergeSort(m, r);
Merge(l, m, r);

}

Parallel.Invoke(
() => MergeSort(l, m),
() => MergeSort(m, r)

);

void Convert(IList<File> files) {
foreach (File f in files) {
Convert(f);

}
}

Parallel.Foreach(files,
f => Convert(f)

);



Parallel Statement Execution

 Task started per invoked statement or loop step

 Wait-barrier at the end of parallel block

Parallel.For(0, N, 
i => DoComputation(i)

);

Task [0]

Initiator

Start

(WaitAll)

Task [N-1]…



Parallel LINQ

 Permit parallel query processing

from book in bookCollection.AsParallel()
where book.Title.Contains("Concurrency")
select book.ISBN;

from number in inputList.AsParallel().AsOrdered()
select IsPrime(number);

Retain input order

arbitrary result order

Query should be side-effect-free (avoid race conditions)



3) Asynchronous Programming

 Goal: Non-blocking Logics/User Interfaces

 Institutionalized language keywords async/await

public async Task<int> LongOperationAsync() { … }

…
var task = LongOperationAsync();
OtherWork();
int result = await task;
…

Potentially asynchronous method

Wait for termination of async method



Async ≠ Asynchronous Method

 async method

□ Caller is not necessarily blocked during entire execution

□ Partially synchronous, partially asynchronous

 async method return types

□ Task<T>: return value T

□ Task: no return value, but caller can await it

□ void: only fire & forget

 await expression

□ continues only when method is completed

□ evaluates to return value (if defined)



Example: Asynchronous Downloads

async Task<string> ConcatWebSitesAsync(string url1, string url2) 
{
var client = new HttpClient();
var download1 = client.GetStringAsync(url1);
var download2 = client.GetStringAsync(url2); 
string site1 = await download1;
string site2 = await download2;
return site1 + site2;

}

Return type string

Immediate string 
return possible

async Task<string> 
GetStringAsync(string url)

Suffix „Async“ as 
naming convention



 Method runs synchronously until a blocking await

□ Wait on other thread or IO

 Returns to caller upon blocking await

Async Method Call

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

Caller
Thread

call

return
…
…
…

}

Runs after task completion



 Other thread continues execution after await

Case 1: Caller is a Non-GUI Thread

method end

TPL
Thread

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

…
…
…

}

call

return

Caller
Thread

blocking await

chained as
continuation

More precisely: Caller has no dispatching synchronization context



 Remainder is later dispatched on UI Thread

Case 2: Caller is GUI Thread

UI Thread 

call

return

method end

TPL
Thread

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

…
…
…

}

dispatch of continuation

blocking await



Non-Blocking & Coherent UI Logic 

async void startDownload_Click(…) {
HttpClient client = new HttpClient();
foreach (var url in collection) {

var data = await client.GetStringAsync(url);
textArea.Content += data;

}
} UI thread

TPL thread_Click()

Http Client Task 1
dispatch

Content = …

Http Client Task 2
dispatch

TPL thread

Content = …



Caution: Notorious Pitfalls

1. Async method are not per se asynchronous

□ Use Task.Run() for long-running synchronous code

2. Thread switches within same method incarnation

□ Thread-local state no longer valid

3. Quasi-parallelism of UI event handling

□ await is equally tricky as old DoEvents()

4. Race conditions remain possible

□ Remember case 1 => test both cases

5. UI deadlocks immanent

□ No task.Wait(), task.Result in UI thread code



Conclusions

 TPL is particularly powerful because of its different 
abstractions on top of the thread pool

 But beware of the pitfalls!
□ Concurrency errors, fire & forget, async/await, …

Abstraction Ingredient Focus

Task Parallelization Explicit task start, wait, 
chain etc.

Complex task 
structures

Data parallelism Parallel Invoke / Loops
PLINQ

Declarative multi-core 
acceleration

Asynchronous 
programming

Async/await Non-blocking logics/UI



Thank You for Your Attention

 Concurrency Research, Consulting, und Training

□ http://concurrency.ch

 Contact

□ Prof. Dr. Luc Bläser
HSR Hochschule für Technik Rapperswil
IFS Institute for Software
Rapperswil, Switzerland

□ lblaeser@hsr.ch

http://concurrency.ch/Training
mailto:lblaeser@hsr.ch

