
The Various Faces of the 
.NET Task Parallel Library

Luc Bläser
Hochschule für Technik Rapperswil

Multicore@Siemens 2015
5 Feb 2015, Nuremberg



The .NET Task Parallel Library (TPL)

 State of the art in .NET parallel programming

□ Replaces Most Explicit Multi-Threading

□ Introduced in .NET 4, extended 4.5

 Known for high performance & generality

□ Different programming abstractions

□ On a common backbone

free icon from wikimedia.org



TPL Appears in Various Faces

Task Parallelization 

Data Parallelism
Asynchronous 
Programming

Thread Pool

- Explicit thread pool usage

- Statement independencies
- LINQ independencies

- Asynchronous methods
- Reactive data flows

Goal: Multi-Core Goal: Non-Blocking



Thread Pool Principle

 Task implement potentially parallel work

 Thread pool = limited number of worker threads

 Tasks are queued, threads fetch and execute tasks

Task

Task

Task

task queue

Task Task

worker threads

thread pool

#worker threads = #processors + #I/O calls



The Thread Pool Advantage

 Modell large degree of parallelization

□ Many tasks = cheap passive objects

 Pay low threading costs

□ Only few recycled threads

 Free lunch with task-modelled programs

□ Automatically faster with more cores



And the Downside?

 Tasks must not have mutual wait dependencies

□ Otherwise deadlock (if thread pool amount is fixed)

□ Thread injection (TPL increases number of threads slowly)

□ Exception: Nested tasks

Task

Task

Task

task queue

Task

Task

thread pool

wait 
dependency

wait 
dependency

task waits on condition to be 
fulfilled by other task



TPL’s Work Stealing Thread Pool

 Reducing contention with local queues

 Number of threads adjusted to task throughput

Global 
Task 

Queue

Task

Local 
Task 

Queue

Task

Task

Local 
Task 

Queue

(empty)

Thread 1 Thread 2

start 
new task

distribute FIFO

next FIFO

new 
nested

redistribute
FIFO

© figure from Jürg Gutknecht, ETH Zürich



Structure of Talk

1) Task Parallelization

2) Data Parallelism

3) Asynchronous Programming



1) Task Parallelization

 Explicit handling of thread pool tasks

□ Elementary support for higher abstraction level

□ Ideal for more complex pattern than higher levels

var task = Task.Factory.StartNew(() => {
// task implementation
return …;

});
…
…
var result = task.Result;

Implicit task.Wait()

Caller

Start

TPL
worker
thread

Wait

(returns)
task end



Watch Out for Concurrency Errors

 As immanent as in multi-threading

□ Tasks may run concurrently (by different threads)

for (int i = 0; i < 100; i++) {
Task.Factory.StartNew(() => {
Console.WriteLine(i);

});
}

Data race = formal error

 Avoid 
□ Race conditions (low-level and high-level)

□ Deadlocks (incl. livelocks)

□ Starvation (fairness issues)



Different Styles (1)

 Start & Join

 Nested tasks

var task1 = Task.Factory.StartNew(CountLeft);
var task2 = Task.Factory.StartNew(CountRight);
…
Task.WaitAll(task1, task2);
// equivalent to task1.Wait(); task2.Wait();

var outerTask = Task.Factory.StartNew(() => {
var innerTask = Task.Factory.StartNew(() => { … });
…
innerTask.Wait();

}

Start

Wait

Start

Wait



Different Styles (2)

 Chaining

 Fire & Forget

var firstTask = Task.Factory.StartNew(…);
var secondTask = new Task(…);
firstTask.ContinueWith(secondTask);

Task.Factory.StartNew(() => {
…

}

Start

Start



Exception Handling

 Unhandled exception in task => task is faulted

□ Propagated to caller of Wait() or Result

□ Otherwise ignored (default since .NET 4.5)

• TaskScheduler.UnobservedTaskException

□ Not automatically propagated along task chain

• Successor task should call Wait()/Result of predecessor



Caution with Fire & Forget

 Exceptions in task are ignored (by default)

 Application may stop before task is completed

□ Thread pool uses background threads

Task.Factory.StartNew(() => {
…
throw e;

} ignored

Task.Factory.StartNew(() => {
…

…
}

sudden termination



2) Data Parallelism

 Declarative: Exploit independencies in program code

□ Can be parallelized, but do not necessarily have to

□ Goal: Acceleration by multi-cores

2a) Statement-Level

2b) LINQ Expressions



Statement-Level Parallelism

 Parallel Statement Blocks

□ Independent statements

 Parallel Loop Blocks

□ Independent loop steps

void MergeSort(l, r) {
long m = (l + r)/2;
MergeSort(l, m);
MergeSort(m, r);
Merge(l, m, r);

}

Parallel.Invoke(
() => MergeSort(l, m),
() => MergeSort(m, r)

);

void Convert(IList<File> files) {
foreach (File f in files) {
Convert(f);

}
}

Parallel.Foreach(files,
f => Convert(f)

);



Parallel Statement Execution

 Task started per invoked statement or loop step

 Wait-barrier at the end of parallel block

Parallel.For(0, N, 
i => DoComputation(i)

);

Task [0]

Initiator

Start

(WaitAll)

Task [N-1]…



Parallel LINQ

 Permit parallel query processing

from book in bookCollection.AsParallel()
where book.Title.Contains("Concurrency")
select book.ISBN;

from number in inputList.AsParallel().AsOrdered()
select IsPrime(number);

Retain input order

arbitrary result order

Query should be side-effect-free (avoid race conditions)



3) Asynchronous Programming

 Goal: Non-blocking Logics/User Interfaces

 Institutionalized language keywords async/await

public async Task<int> LongOperationAsync() { … }

…
var task = LongOperationAsync();
OtherWork();
int result = await task;
…

Potentially asynchronous method

Wait for termination of async method



Async ≠ Asynchronous Method

 async method

□ Caller is not necessarily blocked during entire execution

□ Partially synchronous, partially asynchronous

 async method return types

□ Task<T>: return value T

□ Task: no return value, but caller can await it

□ void: only fire & forget

 await expression

□ continues only when method is completed

□ evaluates to return value (if defined)



Example: Asynchronous Downloads

async Task<string> ConcatWebSitesAsync(string url1, string url2) 
{
var client = new HttpClient();
var download1 = client.GetStringAsync(url1);
var download2 = client.GetStringAsync(url2); 
string site1 = await download1;
string site2 = await download2;
return site1 + site2;

}

Return type string

Immediate string 
return possible

async Task<string> 
GetStringAsync(string url)

Suffix „Async“ as 
naming convention



 Method runs synchronously until a blocking await

□ Wait on other thread or IO

 Returns to caller upon blocking await

Async Method Call

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

Caller
Thread

call

return
…
…
…

}

Runs after task completion



 Other thread continues execution after await

Case 1: Caller is a Non-GUI Thread

method end

TPL
Thread

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

…
…
…

}

call

return

Caller
Thread

blocking await

chained as
continuation

More precisely: Caller has no dispatching synchronization context



 Remainder is later dispatched on UI Thread

Case 2: Caller is GUI Thread

UI Thread 

call

return

method end

TPL
Thread

async Task OpAsync() {
…
Task t = OtherAsync();
await t;

…
…
…

}

dispatch of continuation

blocking await



Non-Blocking & Coherent UI Logic 

async void startDownload_Click(…) {
HttpClient client = new HttpClient();
foreach (var url in collection) {

var data = await client.GetStringAsync(url);
textArea.Content += data;

}
} UI thread

TPL thread_Click()

Http Client Task 1
dispatch

Content = …

Http Client Task 2
dispatch

TPL thread

Content = …



Caution: Notorious Pitfalls

1. Async method are not per se asynchronous

□ Use Task.Run() for long-running synchronous code

2. Thread switches within same method incarnation

□ Thread-local state no longer valid

3. Quasi-parallelism of UI event handling

□ await is equally tricky as old DoEvents()

4. Race conditions remain possible

□ Remember case 1 => test both cases

5. UI deadlocks immanent

□ No task.Wait(), task.Result in UI thread code



Conclusions

 TPL is particularly powerful because of its different 
abstractions on top of the thread pool

 But beware of the pitfalls!
□ Concurrency errors, fire & forget, async/await, …

Abstraction Ingredient Focus

Task Parallelization Explicit task start, wait, 
chain etc.

Complex task 
structures

Data parallelism Parallel Invoke / Loops
PLINQ

Declarative multi-core 
acceleration

Asynchronous 
programming

Async/await Non-blocking logics/UI



Thank You for Your Attention

 Concurrency Research, Consulting, und Training

□ http://concurrency.ch

 Contact

□ Prof. Dr. Luc Bläser
HSR Hochschule für Technik Rapperswil
IFS Institute for Software
Rapperswil, Switzerland

□ lblaeser@hsr.ch

http://concurrency.ch/Training
mailto:lblaeser@hsr.ch

