The Various Faces of the .NET Task Parallel Library

Luc Bläser Hochschule für Technik Rapperswil

Multicore@Siemens 2015 5 Feb 2015, Nuremberg

The .NET Task Parallel Library (TPL)

- State of the art in .NET parallel programming
 - Replaces Most Explicit Multi-Threading
 - □ Introduced in .NET 4, extended 4.5
- Known for high performance & generality
 - Different programming abstractions
 - On a common backbone

TPL Appears in Various Faces

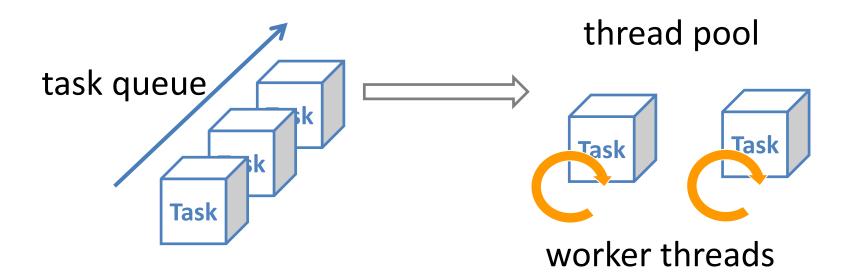
Data Parallelism

Statement independenciesLINQ independencies

Goal: Non-Blocking

Asynchronous Programming

- Asynchronous methods
- Reactive data flows


Task Parallelization

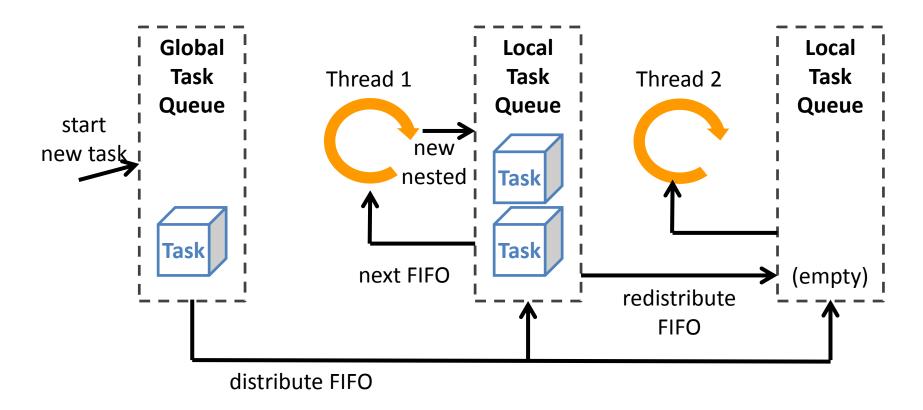
- Explicit thread pool usage

Thread Pool Principle

- Task implement potentially parallel work
- Thread pool = limited number of worker threads
- Tasks are queued, threads fetch and execute tasks

#worker threads = #processors + #I/O calls

The Thread Pool Advantage


- Modell large degree of parallelization
 - Many tasks = cheap passive objects
- Pay low threading costs
 Only few recycled threads
- Free lunch with task-modelled programs
 Automatically faster with more cores

And the Downside?

- Tasks must not have mutual wait dependencies
 Otherwise deadlock (if thread pool amount is fixed)
 Thread injection (TPL increases number of threads slowly)
 Exception: Nested tasks
 - task queue wait dependency task waits on condition to be fulfilled by other task

TPL's Work Stealing Thread Pool

- Reducing contention with local queues
- Number of threads adjusted to task throughput

Structure of Talk

- 1) Task Parallelization
- 2) Data Parallelism
- 3) Asynchronous Programming

1) Task Parallelization

- Explicit handling of thread pool tasks
 - Elementary support for higher abstraction level
 - Ideal for more complex pattern than higher levels

Watch Out for Concurrency Errors

- As immanent as in multi-threading
 - Tasks may run concurrently (by different threads)

```
for (int i = 0; i < 100; i++) {
  Task.Factory.StartNew(() => {
    Console.WriteLine(i);
  });
} Data race = formal error
```

Avoid

- □ Race conditions (low-level and high-level)
- Deadlocks (incl. livelocks)
- Starvation (fairness issues)

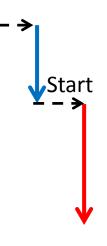
Different Styles (1)

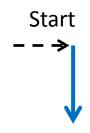
Start & Join

```
var task1 = Task.Factory.StartNew(CountLeft);
var task2 = Task.Factory.StartNew(CountRight);
...
Task.WaitAll(task1, task2);
// equivalent to task1.Wait(); task2.Wait();
```


Nested tasks

```
var outerTask = Task.Factory.StartNew(() => {
    var innerTask = Task.Factory.StartNew(() => { ... });
    ...
    innerTask.Wait();
}
```


Different Styles (2)


Chaining

```
var firstTask = Task.Factory.StartNew(...);
var secondTask = new Task(...);
firstTask.ContinueWith(secondTask);
```



```
Task.Factory.StartNew(() => {
    ...
}
```


Exception Handling

- Unhandled exception in task => task is faulted
 - Propagated to caller of Wait() or Result
 - □ Otherwise ignored (default since .NET 4.5)
 - TaskScheduler.UnobservedTaskException
 - Not automatically propagated along task chain
 - Successor task should call Wait()/Result of predecessor

Caution with Fire & Forget

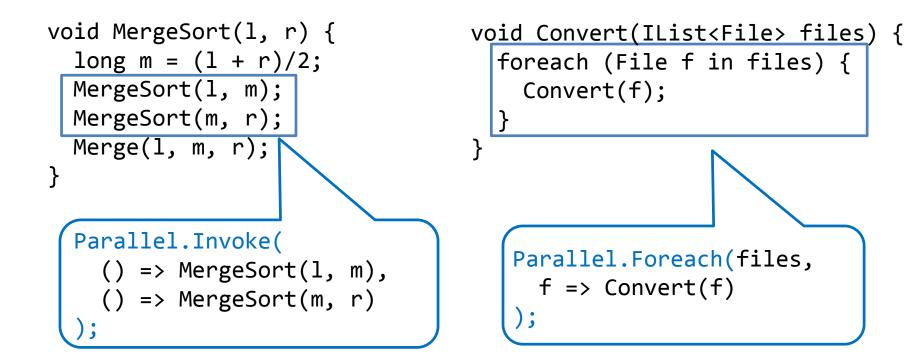
Exceptions in task are ignored (by default)

Task.Factory.StartNew(() => {
 ...
 throw e;
 ignored

Application may stop before task is completed
 Thread pool uses background threads

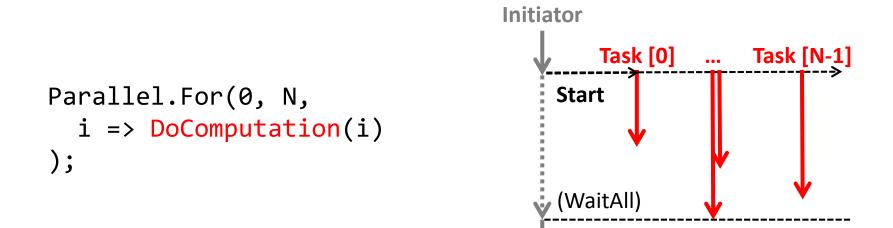
```
Task.Factory.StartNew(() => {
    ...
    sudden termination
}
```

2) Data Parallelism


- Declarative: Exploit independencies in program code
 - □ Can be parallelized, but do not necessarily have to
 - □ Goal: Acceleration by multi-cores

2a) Statement-Level

2b) LINQ Expressions


Statement-Level Parallelism

- Parallel Statement Blocks
 Independent statements
- Parallel Loop Blocks
 Independent loop steps

Parallel Statement Execution

- Task started per invoked statement or loop step
- Wait-barrier at the end of parallel block

Parallel LINQ

Permit parallel query processing

from book in bookCollection.AsParallel()
where book.Title.Contains("Concurrency")
select book.ISBN;

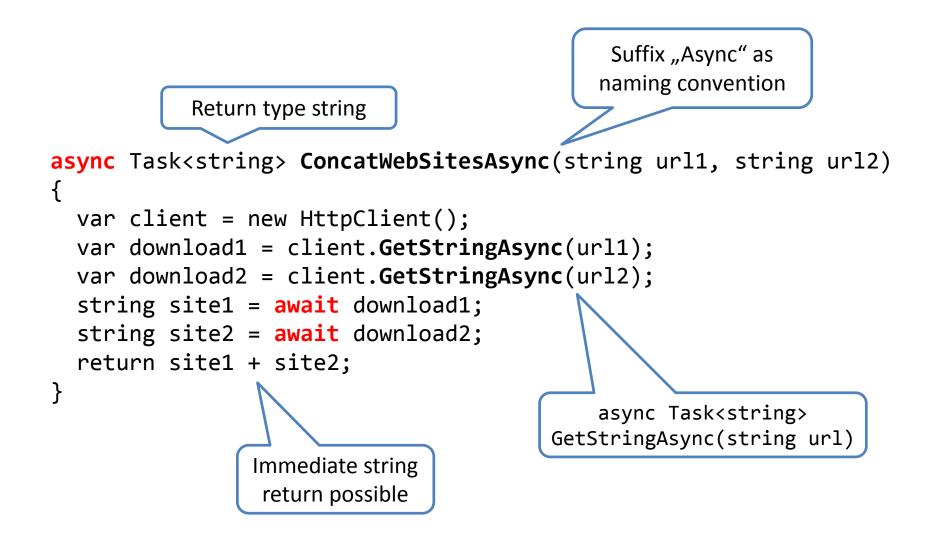
arbitrary result order

from number in inputList.AsParallel().AsOrdered()
select IsPrime(number);

Retain input order

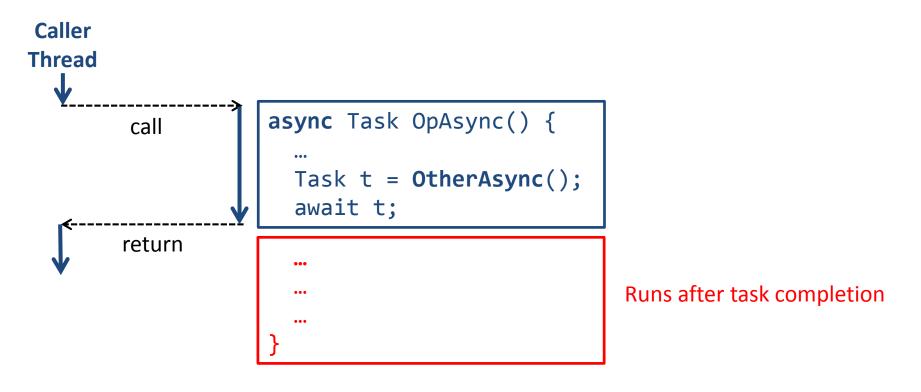
Query should be side-effect-free (avoid race conditions)

3) Asynchronous Programming

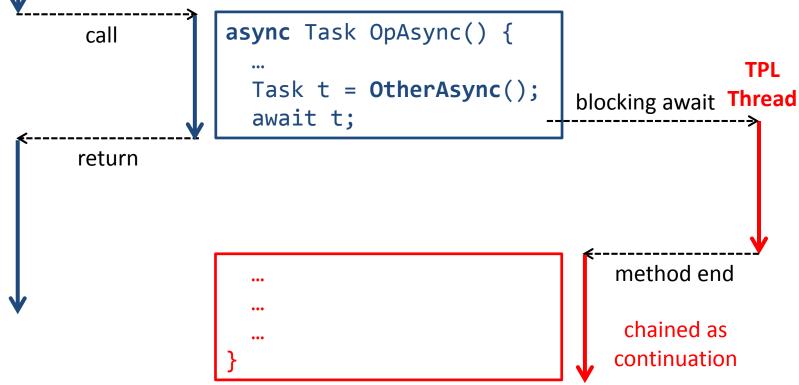

- Goal: Non-blocking Logics/User Interfaces
- Institutionalized language keywords async/await

```
Potentially asynchronous method
public async Task<int> LongOperationAsync() { ... }
var task = LongOperationAsync();
OtherWork();
int result = await task;
         Wait for termination of async method
```

Async ≠ Asynchronous Method

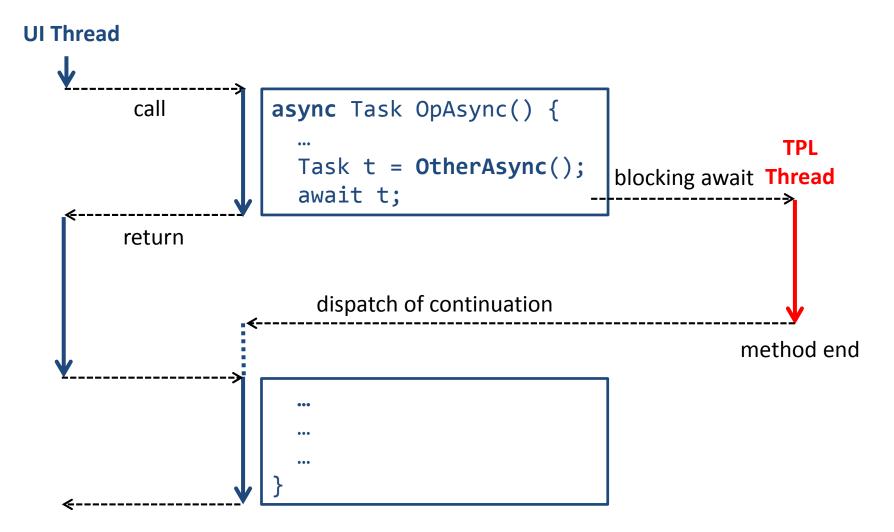

- async method
 - Caller is not necessarily blocked during entire execution
 - Partially synchronous, partially asynchronous
- async method return types
 - □ Task<T>: return value T
 - □ Task: no return value, but caller can await it
 - □ void: only fire & forget
- await expression
 - continues only when method is completed
 - evaluates to return value (if defined)

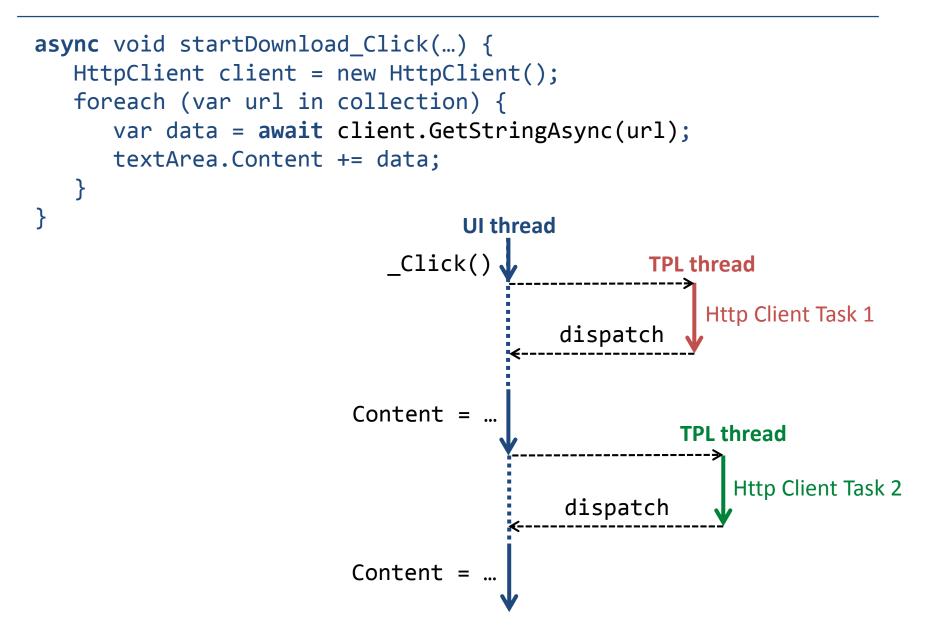
Example: Asynchronous Downloads


Async Method Call

- Method runs synchronously until a blocking await
 Wait on other thread or IO
- Returns to caller upon blocking await

Case 1: Caller is a Non-GUI Thread


Other thread continues execution after await
 Caller
 Thread
 J


More precisely: Caller has no dispatching synchronization context

Case 2: Caller is GUI Thread

Remainder is later dispatched on UI Thread

Non-Blocking & Coherent UI Logic

Caution: Notorious Pitfalls

- 1. Async method are not per se asynchronous
 - Use Task.Run() for long-running synchronous code
- Thread switches within same method incarnation
 Thread-local state no longer valid
- 3. Quasi-parallelism of UI event handling
 - □ await is equally tricky as old DoEvents()
- 4. Race conditions remain possible
 - □ Remember case 1 => test both cases
- 5. UI deadlocks immanent
 - Notask.Wait(), task.Result in UI thread code

Conclusions

 TPL is particularly powerful because of its different abstractions on top of the thread pool

Abstraction	Ingredient	Focus
Task Parallelization	Explicit task start, wait, chain etc.	Complex task structures
Data parallelism	Parallel Invoke / Loops PLINQ	Declarative multi-core acceleration
Asynchronous programming	Async/await	Non-blocking logics/UI

But beware of the pitfalls!

□ Concurrency errors, fire & forget, async/await, ...

Thank You for Your Attention

- Concurrency Research, Consulting, und Training
 - □ <u>http://concurrency.ch</u>
- Contact
 - Prof. Dr. Luc Bläser
 HSR Hochschule für Technik Rapperswil
 IFS Institute for Software
 Rapperswil, Switzerland
 - Iblaeser@hsr.ch

