A Component Language for
Structured Concurrent Programming

Luc Blaser
ETH Zlrich

ETH Talk at TU Darmstadt
idgenossische Technische Hochschule Ziirich 23 Jan 2009

Swiss Federal Institute of Technology Zurich

Motivation

Problems of object-orientation

* References
— Flat object structures without explicit hierarchies
— Intended encapsulation is not guaranteed

 Inheritance
— Forced combination of polymorphism and reuse
— Limited single inheritance or multi-inheritance conflicts

« Concurrency
— Unnecessarily blocking interactions via method calls
— Threads operating on passive objects without control

A New Programming Model

Component concept
« General abstraction unit at runtime
 Strict encapsulation
— External dependencies only allowed via explicit interfaces

« Component can offer and require interfaces
— Offered interfaces represent own external facets of a component
— Required interfaces are to be provided by other components

« Multi-instantiation from a component template

COMPONENT Car
OFFERS Vehicle, LuggageSpace vehicle O— _C Road
REQUIRES Road, Radio Car
(* implementation *) Luggage- O— —(_ Radio

END Car Space

Component Instances

Declarations
carl, car2: Car

vehicle: ANY(Vehicle, LuggageSpace | Road, Radio)

any component template which
- offers at least Vehicle and LuggageSpace
 requires at most Road and Radio

Dynamic collection of component instances
* Index identifies an instance within the collection:
car[state: TEXT; number: INTEGER]: Car
* Possible instances:
car['ZH", 965231] car['SO”, 11]

Component Relations

sub-components
O oo —C
0—_‘:&_‘:((
O— —(C
* Interface connections connection between
% required & offered interface
e
Y
:]\Q_
7

« Communication-based interactions

S

(it (it concurrent

vV m
message communication

Hierarchical Composition

COMPONENT Car ... ’ variables as containers

VARIABLE for components

engine: Engine;
gearbox: GearBox;
wheels[n: INTEGER]: Wheel
BEGIN

NEW/(engine); NEW(gearbox);
CONNECT(Gears(engine), gearbox);
FORIi:=1TONDO

NEW (wheell[i]);

CONNECT (Axle(wheel[i]), gearbox)

:

encapsulated
sub-components

END
END Car

Motor

engine

Car

Gears
E_CO_

by surrounding component

. |
structure exclusively controlled F

/

gearbox

GearB

AX

IeH

Wh ee‘

wheel[1]

Wheei

wheel[N]

Dynamic Composition

COMPONENT TrafficSimulation
VARIABLE
car[licenseNo: INTEGER]: Car;
road: RoadNetwork;
news: TrafficCenter
BEGIN
NEW(road); NEW(news);
REPEAT
id := GetNewLicenseNo();
NEW(car[id]);
CONNECT(Road(car[id]), road);
CONNECT(Radio(carl[id], news)
UNTIL EnoughCars()

END TrafficSimulation N

number of cars only
known at runtime

Vehicle

?

Car

TrafficCenter

Radio (i}

Vehicle

?

Car

!

RoadNetwork

Pointer-Free Structuring

Interface connections versus references

— Interface connections only set by the surrounding component
— Explicitly declared incoming and outgoing connection points

Hierarchy of component networks
Hierarchical lifetimes

— Deletion of a component => automatic deletion of sub-components
— Explicit deletion of a single component => interface disconnection

Safe memory management without garbage collector

TrafficCenter TrafficCenter
O S
oldcar Q || Q DELETE(oldCar) ‘ Q
Car Car |:> Car
Engi Engi Engi
@ ;iGearE Gearﬁ

Concurrency und Interactions

« Each component runs its own inner processes

 Components interact by message communication via
Interfaces

communication

inner

process separate communication

Car {A with each client

_/

Radio o

TrafficCenter

Car

O
C —

all cars run concurrently and
act autonomously

Communication

 Server maintains a statefull communication with each

client individually

e Sending and receiving messages according to a protocol

communication
protocol in EBNF

repetition | INTERFACE Radio W
IN RequestNews(location: TEXT)

{ client

OUT Jam(roadNo: INTEGER)

server

| c
. OUT Clear(roadNo: TEXT) .
alternative }

OUT EndOfNews RequestNews
END Radio
arbitrary
repetition

Radio
@ TrafficCenter
>
Jam
or
< Clear
< EndOfNews

Component Implementation

Radio
Car @ TrafficCenter
send message separate service
process per client
COMPONE| /T Car REQUIRES Radio COMPONENT Traffi nter OFFERS Radio
BEGIN IMPLEMENTATION Radio

Radio!RequestNews(here); | (aceive test
REPEAT

IF Radio?Jam THEN
Radio?Jam(x) (* bypass x *)

ELSIF Radio?Clear THEN

(* can take x *)

UNTIL Radio?EndOf
Radio?EndOfNews
END Car

receive message

END TraﬁicNewsk

BEGIN {SHARED}
?RequestNews(location);
FOREACH road x at location DO

IF x jammed THEN !Jam(x)
ELSE !Clear(x)
END

END;

IENdOfNews

END Radio

monitor synchronisation

compiler-checked
race exclusion

inside a component

Runtime System

A small operating system for scalable efficient concurrency

« Light-weight processes
— Micro stacks of arbitrarily small size
— Dynamic extension and reduction

» Fast context switches
— Synchronous switches without software interrupts
— Economical preemption by code instrumentation

* Inbuilt synchronization
— Protocol-based communication
— System-managed monitors

 Efficient memory management
— Hierarchical memory management
— No virtual memory management

Light-Weight Processes

Micro stacks

 Arbitrarily small stacks
— Size not fixed to page granularity

« Stack as a list of blocks of arbitrary size
— Dynamic extension and reduction

C C

v | v v v
heap
stack block no separated stack and heap spaces

* Initial stack size computed by the compiler
— Communication instead of methods => mostly fix stack size

Context Switches

e Synchronous switch
— Procedural system call switching stack (FP, SP, PC)
— No software interrupt (no kernel protection for safe language)

« Economic preemption

Compiler inserts runtime checks in
machine code

Checks in intervals of guaranteed
maximum time

Checks initiate switch on expired
Interval

Switch only saves the registers in use

No unnecessary space for register
backups

Very short checks (~0.1% overhead)

Yﬁg procedure call

check in
each loop

check on

.

check in sequence of
maximum runtime

v

Practical Application (TU Berlin)

Traffic simulation developed in the new language

« Self-active cars
— All cars drive autonomously and concurrently
— No explicit program loop, centrally controlling the car movements
— No explicit parking and waiting gueues

« Virtual time
— Virtual time corresponds to the time in the simulated world
— All cars run with a synchronous virtual time

 Individual planning and learning
— Drivers plan their journey, route and departure time individually
— Drivers learns from previous journeys (traffic delays)

Scaling and Performance

Maximum number of threads / light weight-processes

Component OS | Windows .NET | Windows JVM | Active Oberon

5,010,000 1,890 10,000 15,700
4GB main memory, City example
Execution performance
Program (sec) | Component OS C# Java | Oberon AOS
ProducerCons. 16 19 130 60
Eratosthenes 1.8 6.8 4.6 5.8
TokenRing 2.1 22 22 18
TrafficSim 2.4 1980 - -
1,000 cars
TrafficSim 76min out of memory - -
260,000 cars N

Sequential C++ simulation: 210min

6 CPUs Intel Xeon 700MHz, C# & Java on Windows Server Enterprise Edition

Conclusions

A new language for structured concurrent programming

« Conceptual advantages
— Hierarchical structures and encapsulation
— Inherent structured concurrency (race-free)

« Technical advantages
— Large number of parallel processes
— Fast execution of concurrent programs
— No garbage collector needed

* Practical applicability (traffic simulation)
— More natural simulation (self-active cars)
— Faster than other concurrent and sequential simulations

Synchronous Context Switch

« System call via ordinary
procedure call
— No software interrupt

— No kernel protection
due to safe language

PROCEDURE Switch(target: Process);

REGISTER.FP :=
END Switch;

target

 Direct switch to target process

running
T~ FP‘ >~
old FP
Sp ret P
FP —»
backup
by prolog

target

ep |

/

old FP
ret PC

SP

FP

>

restore by
epilog

Economic Preemption

« Compiler inserts runtime checks in
machine code

Checks in intervals of guaranteed
maximum time

Checks initiate preemption on
expiration of the time interval

Preemption only saves the registers in
use on the stack

Process does not need unnecessary
space to backup unused registers

Very fast checks (<0.1% overhead)

register set by the
timer interrupt

—Z—

call saves the
necessary registers

[

]

check in
each loop

check on
procedure call

check in sequence of
maximum runtime

