
A Component Language for

Structured Concurrent Programming

Luc Bläser

ETH Zürich

Talk at TU Darmstadt

23 Jan. 2009

Motivation

Problems of object-orientation

• References

– Flat object structures without explicit hierarchies

– Intended encapsulation is not guaranteed

• Inheritance

– Forced combination of polymorphism and reuse

– Limited single inheritance or multi-inheritance conflicts

• Concurrency

– Unnecessarily blocking interactions via method calls

– Threads operating on passive objects without control

A New Programming Model

Component concept

• General abstraction unit at runtime

• Strict encapsulation

– External dependencies only allowed via explicit interfaces

• Component can offer and require interfaces

– Offered interfaces represent own external facets of a component

– Required interfaces are to be provided by other components

• Multi-instantiation from a component template

COMPONENT Car

OFFERS Vehicle, LuggageSpace

REQUIRES Road, Radio

(* implementation *)

END Car

Car

Vehicle

Luggage-

Space

Road

Radio

Component Instances

Declarations
car1, car2: Car

vehicle: ANY(Vehicle, LuggageSpace | Road, Radio)

Dynamic collection of component instances

• Index identifies an instance within the collection:

car[state: TEXT; number: INTEGER]: Car

• Possible instances:

car[“ZH”, 965231] car[“SO”, 11] …

any component template which

• offers at least Vehicle and LuggageSpace

• requires at most Road and Radio

Component Relations

• Hierarchical composition

• Interface connections

• Communication-based interactions

connection between

required & offered interface

encapsulated

sub-components

message communication

concurrent

components

Hierarchical Composition

COMPONENT Car …

VARIABLE

engine: Engine;

gearbox: GearBox;

wheels[n: INTEGER]: Wheel

BEGIN

NEW(engine); NEW(gearbox);

CONNECT(Gears(engine), gearbox);

FOR i := 1 TO N DO

NEW(wheel[i]);

CONNECT(Axle(wheel[i]), gearbox)

END

END Car

Car

Motor

Engine

engine gearbox

GearBox

Gears

Axle

…Wheel

wheel[1]

Wheel

wheel[N]
structure exclusively controlled

by surrounding component

variables as containers

for components

encapsulated

sub-components

Dynamic Composition

COMPONENT TrafficSimulation

VARIABLE

car[licenseNo: INTEGER]: Car;

road: RoadNetwork;

news: TrafficCenter

BEGIN

NEW(road); NEW(news);

REPEAT

id := GetNewLicenseNo();

NEW(car[id]);

CONNECT(Road(car[id]), road);

CONNECT(Radio(car[id], news)

UNTIL EnoughCars()

END TrafficSimulation RoadNetwork

Road

Car

Vehicle

... Car

Vehicle

TrafficCenter

Radio

number of cars only

known at runtime

Pointer-Free Structuring

• Interface connections versus references

– Interface connections only set by the surrounding component

– Explicitly declared incoming and outgoing connection points

• Hierarchy of component networks

• Hierarchical lifetimes

– Deletion of a component => automatic deletion of sub-components

– Explicit deletion of a single component => interface disconnection

• Safe memory management without garbage collector

DELETE(oldCar)
Car

TrafficCenter

GearBox

Engine

Car

oldCar

TrafficCenter

Car

GearBox

Engine

GearBox

Engine

Concurrency und Interactions

• Each component runs its own inner processes

• Components interact by message communication via
interfaces

communication

Car

Car

TrafficCenter

Radio

inner

process

all cars run concurrently and

act autonomously

separate communication

with each client

Communication

• Server maintains a statefull communication with each

client individually

• Sending and receiving messages according to a protocol

communication

protocol in EBNF

repetition

alternative

INTERFACE Radio

IN RequestNews(location: TEXT)

{

OUT Jam(roadNo: INTEGER)

|

OUT Clear(roadNo: TEXT)

}

OUT EndOfNews

END Radio

EndOfNews

client server

Car TrafficCenter

Radio

RequestNews

Jam
arbitrary

repetition
or

Clear

Component Implementation

COMPONENT TrafficCenter OFFERS Radio

IMPLEMENTATION Radio

BEGIN {SHARED}

?RequestNews(location);

FOREACH road x at location DO

IF x jammed THEN !Jam(x)

ELSE !Clear(x)

END

END;

!EndOfNews

END Radio

END TrafficNews

separate service

process per client

Car TrafficCenter

Radio

COMPONENT Car REQUIRES Radio

BEGIN

Radio!RequestNews(here);

REPEAT

IF Radio?Jam THEN

Radio?Jam(x) (* bypass x *)

ELSIF Radio?Clear THEN

Radio?Clear(x) (* can take x *)

END

UNTIL Radio?EndOfNews;

Radio?EndOfNews

END Car receive message

receive test

send message

compiler-checked

race exclusion

monitor synchronisation

inside a component

Runtime System

A small operating system for scalable efficient concurrency

• Light-weight processes

– Micro stacks of arbitrarily small size

– Dynamic extension and reduction

• Fast context switches

– Synchronous switches without software interrupts

– Economical preemption by code instrumentation

• Inbuilt synchronization

– Protocol-based communication

– System-managed monitors

• Efficient memory management

– Hierarchical memory management

– No virtual memory management

Light-Weight Processes

Micro stacks

• Arbitrarily small stacks
– Size not fixed to page granularity

• Stack as a list of blocks of arbitrary size
– Dynamic extension and reduction

heap

stack block no separated stack and heap spaces

• Initial stack size computed by the compiler
– Communication instead of methods => mostly fix stack size

Context Switches

• Synchronous switch

– Procedural system call switching stack (FP, SP, PC)

– No software interrupt (no kernel protection for safe language)

• Economic preemption
check in

each loop

check on

procedure call

check in sequence of

maximum runtime

– Compiler inserts runtime checks in

machine code

– Checks in intervals of guaranteed

maximum time

– Checks initiate switch on expired

interval

– Switch only saves the registers in use

– No unnecessary space for register

backups

– Very short checks (~0.1% overhead)

Practical Application (TU Berlin)

Traffic simulation developed in the new language

• Self-active cars

– All cars drive autonomously and concurrently

– No explicit program loop, centrally controlling the car movements

– No explicit parking and waiting queues

• Virtual time

– Virtual time corresponds to the time in the simulated world

– All cars run with a synchronous virtual time

• Individual planning and learning

– Drivers plan their journey, route and departure time individually

– Drivers learns from previous journeys (traffic delays)

Scaling and Performance

Component OS Windows .NET Windows JVM Active Oberon

5,010,000 1,890 10,000 15,700

• Maximum number of threads / light weight-processes

Program (sec) Component OS C# Java Oberon AOS

ProducerCons. 16 19 130 60

Eratosthenes 1.8 6.8 4.6 5.8

TokenRing 2.1 22 22 18

TrafficSim

1,000 cars

2.4 1980 - -

TrafficSim

260,000 cars

76min out of memory - -

4GB main memory, City example

• Execution performance

6 CPUs Intel Xeon 700MHz, C# & Java on Windows Server Enterprise Edition

Sequential C++ simulation: 210min

Conclusions

A new language for structured concurrent programming

• Conceptual advantages

– Hierarchical structures and encapsulation

– Inherent structured concurrency (race-free)

• Technical advantages

– Large number of parallel processes

– Fast execution of concurrent programs

– No garbage collector needed

• Practical applicability (traffic simulation)

– More natural simulation (self-active cars)

– Faster than other concurrent and sequential simulations

Synchronous Context Switch

• System call via ordinary

procedure call

– No software interrupt

– No kernel protection

due to safe language

• Direct switch to target process

PROCEDURE Switch(target: Process);

BEGIN

running := REGISTER.FP;

REGISTER.FP := target

END Switch;

FP

SP

FP

running

ret PC

old FP
FP

target

ret PC

old FP

FP

SP

restore by

epilog

backup

by prolog

Economic Preemption

• Compiler inserts runtime checks in
machine code

– Checks in intervals of guaranteed
maximum time

– Checks initiate preemption on
expiration of the time interval

– Preemption only saves the registers in
use on the stack

– Process does not need unnecessary
space to backup unused registers

– Very fast checks (<0.1% overhead)

check in

each loop

check on

procedure call

check in sequence of

maximum runtime

IF Timeout THEN

Switch(ready)

END

register set by the

timer interrupt

call saves the

necessary registers

