
Concurrency in Software Designs:
How to Avoid Nasty Surprises?

Prof. Dr. Luc Bläser
Hochschule für Technik Rapperswil

Varian Medical Systems,
Baden, 31 Oct 2013

1

Concurrency Becomes Inevitable

 Imposed by Designs

□ Making GUIs responsive

□ External libraries

□ Distributed systems

□ Some language features

 Accelerating Performance

□ Clock speed at ceiling

□ Parallelizing on multi-cores

□ Must program this explicitly

□ “The free lunch is over” – H. Sutter

2

So Much Can Go Wrong

 New Sorts of Potential Errors

□ Race Conditions

□ Deadlocks & Livelocks

□ Starvations

 Non-Deterministic Errors

□ Occur Sporadically

□ Hard to find

□ Hard to test

3

Therac-25 RT Linac

Patients died by overradiation
Cause: Race condition

Should be alarmed
- “No clue why this test failed. We reran it many times and it stays green now.”
- “The software hangs on very rare occasions. Just restart it; nothing harmful.”

N. G. Leveson, C. S. Turner, An Investigation of the Therac-25 Accidents,
IEEE Computer, Volume 26, Issue 7 (Jul 1993), pp. 18-41

Talk Outline

 Concurrency Essentials

□ Multi-Threading in a Nutshell

□ Safety & Liveness Criteria

 Structuring Concurrency

□ Design in Architectures

□ Scenarios, patterns & pitfalls

• Producer / Consumer

• Responsive UI / logic

• Algorithmic parallelization

 Conclusions

4

Sources of Concurrency in .NET

 Explicit Threads

 TPL Tasks (Thread Pools)

 Parallel LINQ

 Finalizers, “C# Destructors”

 Web services, sockets

 Background-Worker

 Asynchronous calls

 async/await

 Timers

 External calls/callbacks

 Across Processes (via DB, files, network etc.)

5

Multi-threading
underneath

Concurrent Programming Model

 Threads operating on
passive objects

□ Via direct or indirect
method calls

□ Parallel or arbitrary
interleaving

□ By default, uncontrolled

□ Need to synchronize
explicitly

 Better models exist

□ Actors, (STM)

6

Threads

Objects
References

Shared!

Predestinates of Race Conditions

7

int Next() {
return counter++;

}

foreach (T item in threadSafeCollection) {
…

}

void Swap() {
t = y; y = x; x = t;

}

while (safeBuffer.Size > 0) {
safeBuffer.RemoveFirst();

}
if (weakReference.IsAlive) {
weakReference.Value.Op();

}

if (!loaded) {
loaded = true;
Internalize();

}

Race Condition

 Insufficiently synchronized accesses on shared
resources

□ Erroneous or undefined behavior

□ Depends on timing/interleaving of concurrent execution

 Low level: Data races

□ Concurrent accesses without sync

□ On same variable or array element

□ Read-write, write-read, write-write

 High level: Unsynchronized sequences

□ Critical (atomic) sections not ensured

8

Synchronization Abstractions in .NET

 Monitor (aka C# lock with Wait & Pulse)

 Reader-writer lock

 Concurrent collections

 Primitives: Semaphore, Barrier, Mutex,
CountDownEvent, wait handles, …

 Thread/Task Joins

 Memory level: Interlocked, volatile, barriers/fences

9

Fixing Races, Causing Deadlocks

10

class Repository { …
void CopyTo(Repository target) {
lock(this) {

// get
target.Add(content);

}
}

public void Add(T content) {
lock(this) {

// add
}

}
}

Thread T1
a.CopyTo(b);

Thread T2
b.CopyTo(a);

lock a
lock b

lock b
lock a

Nested lock

T1 locks a
T2 locks b
T1 wants b
T2 wants a

Deadlock

Deadlock

 Threads wait for each to
release a resource such
that none can proceed

□ Nested locks

□ Cyclic wait dependencies

□ (Mutual blocking
without timeouts)

 Livelock = Deadlock
consuming processor
while waiting

11

T2T1

awaits
lock

locked
by

awaits
lock

locked
by

a

b

while (!Wait(timeout)) { }

Starvation: Not Much Better

 Fairness problem

□ A thread may never get the chance to access a resource

□ Others could continuously overrun the waiting thread

 Frequent candidates

□ Timeout and retry

□ Thread priorities

□ Optimistic concurrency control

□ Self-designed read/write locks

□ .NET sync primitives do
not guarantee strict fairness

12

a.Lock();
while (!b.TryLock()) {
a.Unlock();
// let others continue
a.Lock();

}

Safety & Liveness Conditions

 Mutual exclusion

□ Critical sections on shared resources are properly
synchronized

 No deadlocks

□ Threads cannot lock each other for indefintie time

 No starvation

□ Thread waiting for a condition should proceed after some
time if the condition is sufficiently often fulfilled

13

Safety

Testing Concurrency Bugs?

 Errors are time-dependent / non-determinstic

□ May show up sporadically and extremely seldom

 Multi-thread testing has limitation

□ Would need to test all relevant / possible interleavings

□ Watch sporadic failures!

 Other approaches needed

□ Static checkers?

□ Analytical approach

14

Concurrency Checkers

 Static analysis is an unfulfillable wish

□ Exponential state explosion

• Eventually as hard as «halting problems»

□ Good results with some model and dynamic checkers

• MSR Chess for .NET (no longer maintained)

• Intel Inspector XE (also for .NET)

• Java Pathfinder and others

• Own new research project…

 Most analysis tools only detect primitive style issues

□ VS Code Analysis, FxCop, Resharper

□ Detects empty lock-blocks, locking null etc.

15

Need for Analytical Approach

 Our problem: Threads can run arbitrarily on objects

□ Which threads may access which objects?

□ Which objects must be thread-safe and which not?

□ Exist potentially cyclic wait dependencies?

16

Concurrency Model in SW Architecture

1. Identify active instances

2. Specify interactions

3. Define synchronization

4. Reason about correctness

17

1. Identify Active Instances

 Threads, parallel tasks etc.

□ Self-defined

• Objects running partially or fully decoupled activities

□ Externally imposed

• Single UI thread, service worker threads, …

18

<<thread>>
StreamReader

Active class
r : StreamReader

Active object
(thread instance)

May also model conceptually active instances (running inner threads)

Concurrent Class Diagram

19

AnalysisUI StatView

StreamReaderDataAnalyzer DataBuffer Stream

AnalysisStats

Record

Indirectly active
(UI thread)

Thread-Safe

Confined

*

*

2. Specify Interactions

20

r : StreamReader b : DataBuffer

b.put()

active object passive object

synchronous call

asynchronous call

beginDispatch()

w : WorkerThread : DispatchQueue

: Record

: StatView

Concurrent Communication Diagram

21

: AnalysisUI : StatView

: StreamReader: DataAnalyzer b: DataBuffer : Stream

: AnalysisStats

: Record: Record : Record

b.put()b.get() read()update()

beginDispatch()

3. Define Synchronization

22

DataBuffer

put() { guarded }
get() { guarded }

thread-safe

Record

get() { sequential }
set() { sequential }

not thread-
safe

Synchronization must
be externally realized

(confinement)

Synchronization is
internally realized
(exclusive locks)

Math

abs() { concurrent }
sign() { concurrent }

thread-safe

Parallel invocation is
safe

(no / shared locks)

When No Sync is Needed

 Immutable state/objects

□ Synchronization/fence after construction needed

 Confined objects

□ Only used by 1 thread at a time

□ Local to one thread only

□ Encapsulated inside thread-safe container

□ Moved across threads (sync on moving)

□ Threads operate on disjoint parts

23

4. Reason About Correctness

 Race condition

Is Synchronization or confinement defined per class?

Are critical sections defined and protected?

 Deadlocks

For nested locks: Is a linear order of locking defined?

No read-write lock upgrade (unless supported)?

 Starvation

Fair synchronization primitives (if important)?

No priority inversion with multiple thread priorities?

24

Deadlock Prevention

 Introduce linear order on resources

□ Only acquire locks on resources in ascending order

 More coarse grained lock

□ If ordering is not possible (too dynamic object structures)

25

Item
[1]

Item
[2]

Item
[3]

Item
[4]

Lock [1] Lock [3] Lock [4]

Item Item Item Item

Holder
lock holder;
access items

Architectural Deadlock Prevention

 Hierarchy of components /
modules
□ Lock per component
□ Component may comprise

multiple objects
□ Inside component, only use

the corresponding lock

 Call only from upper to
lower modules
□ Partial order on components
□ Nested locks only according

in this order

 Up-calls are deadlock-prone
□ Per events, delegates,

lambdas

26

Business
Logic 1

Data Model

Business
Logic 2

Persistence
Mapper

Bulk Cache

UI
Service

Implementation

up-call

Archetypical Scenarios & Patterns

 Loosely coupled activities

□ Producer-consumer

 Responsive UI/logic

□ Asynchronous execution

 Algorithmic parallelization

□ Divide & parallel conquer

27

Producer-Consumer

 Faster than sequential processing

□ Partial decoupling of processing steps

• Wait only when buffer is full or empty

□ Serving IO channels, delayed logging etc.

 Buffer must be thread-safe

□ Concurrent blocking collection, monitor sync etc.

28

Bounded
Buffer

Producer Consumer

Concurrent Pipelines

 Faster than sequential series processing

 Do not use thread pools for this

□ Unsuited for mutual task dependencies

□ Deadlocks for fixed-sized thread pools

□ Thread injection (worker threads increase after delay)

29

Buffer

Process
step 0

...

Process
step 1

Buffer

Process
step N

Monitor: Know the Pitfalls!

30

class BoundedBuffer<T> {
…
public void Put(T x) {
lock(this) {

while(queue.Count == limit) { Monitor.Wait(this); }
queue.Enqueue(x);
Monitor.PulseAll(this); // signal non-free

}
}
public T Get() {
lock(this) {

while(queue.Count == 0) { Monitor.Wait(this); }
T x = queue.Dequeue();
Monitor.PulseAll(this); // signal non-full
return x;

}
}

}

Monitor Pitfalls

 Recheck wait conditions

□ Between pulse and monitor reentrance, other threads may
enter before and invalidate the condition

□ while(!condition) {
Monitor.Wait(syncNode);

}

 PulseAll() in case of multiple wait conditions

□ E.g. non-full, non-empty
□ Monitor.PulseAll(syncNode)

31

Responsive UI/Logic

 UI is single-threaded

□ Keep responsive by outsourcing blocking/computing-
intense tasks to other threads

□ Only UI thread must access GUI controls

 E.g. C# 5 async/await model

32

public async Task<int> LongOperationAsync() { … }

…
Task<int> task = LongOperationAsync();
// other work
int result = await task;
// continue

Caution: Async/Await Execution Model

 Async methods are half-synchronous/half-
asynchronous

□ Caller executes methods synchronously until a blocking
await occurs

□ Afterwards method runs asynchronouly

async Task<int> GetSiteLengthAsync(string url) {
HttpClient client = new HttpClient();
Task<string> task = client.GetStringAsync(url);
string site1 = await task;
return site1.Length;

}

Synchronous
(caller thread)

Asynchronous
(potentially other
thread)

33

 Task thread executes part after await

Case 1: No Synchronization Context

task end

TPL
Thread

async Task OpAsync() {
…
…
Task t = OtherAsync();

await t;
…
…

}

Task t

call

return

Caller
Thread

task start

Continuation

34

 E.g. GUI thread as caller: dispatch

Case 2: With Synchronization Context

GUI Thread

caller

return

task end

TPL
Thread

async Task OpAsync() {
…
…
Task t = OtherAsync();

await t;
…
…

}

Task t

Dispatch of the continuation

task start

35

Various Async/Await Pitfalls

1. Async methods are not per se asynchronous

2. Thread switch inside methods

3. Quasi-parallelism in UI event handler

4. Race conditions remain possible

5. UI deadlocks because of wrong task access

6. Exceptions are ignored for «fire-and-forget»

7. Premature termination of «fire and forget»

36

Divide & Parallel Conquer

 Classical parallelization for acceleration

 Thread pool is the way to go

37

void MergeSort(l, r) {
long m = (l + r)/2;
MergeSort(l, m);
MergeSort(m, r);
Merge(l, m, r);

}

Parallel.Invoke(
() => MergeSort(l, m),
() => MergeSort(m, r)

);

void Convert(IList<File> files) {
foreach (File f in files) {
Convert(f);

}
}

Parallel.Foreach(files,
f => Convert(f)

);

Task Parallelization in the Cloud

 Program parallel tasks in .NET

 Send to cloud for execution

 Cloud side has e.g. MS HPC cluster

.NET Program

Parallel
Tasks

.NET Runtime

Runtime Extension

Task Parallelization
Service

HPC Cluster

Node

Node

Node

Node

var distribution =
new Distribution("tasks.concurrency.ch", …);

…
distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = Factorize(inputs[i]);

});

private long Factorize(long number) {
for (long k = 2; k * k <= number; k++) {
if (number % k == 0) { return k; }

}
return number;

}

http://concurrency.ch/Projects/TaskParallelism

38

http://concurrency.ch/Projects/TaskParallelism

Conclusions

 Concurrency becomes increasingly important

□ Programmers need to strengthen their skills

 Danger of non-deterministic errors

□ Clear concurrency design for SW architecture is vital

 Various pitfalls lurk in maintaining technologies

□ Awareness is required as long as tools do not help here

39

Thanks for Your Attention!

 .NET Concurrency Courses

□ http://concurrency.ch/Training

 Consulting & Reviews

 Engineering & Research Projects

 Contact

40

Prof. Dr. Luc Bläser
HSR Hochschule für Technik Rapperswil
IFS Institut für Software
lblaeser@hsr.ch
http://concurrency.ch, http://ifs.hsr.ch

http://concurrency.ch/Training
mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://concurrency.ch/

Institut für Software (IFS)

41

Partners

Academic collaborators

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788

