Concurrency in Software Designs:
How to Avoid Nasty Surprises?

Prof. Dr. Luc Blaser

Hochschule fiir Technik Rapperswil

HOCHSCHULE FUR TECHNIK ®_0o FUR Varian Medical SyStemS,

| S Baden, 31 Oct 2013
1

FHO Fachhochschule Ostschweiz

Concurrency Becomes Inevitable

" |mposed by Designs
0 Making GUIs responsive
0 External libraries
0 Distributed systems
0 Some language features

= Accelerating Performance
0 Clock speed at ceiling
0 Parallelizing on multi-cores
0 Must program this explicitly
0 “The free lunch is over” — H. Sutter

So Much Can Go Wrong

= New Sorts of Potential Errors
0 Race Conditions

0 Deadlocks & Livelocks
0 Starvations

Therac-25 RT Linac

™, ~ y
[
¥ .
/'y . ‘ X
4 & b
gl

J

" Non-Deterministic Errors

0 Occur Sporadically

Patients died by overradiation

: Cause: Race condition
0 Hard to find
N. G. Leveson, C. S. Turner, An Investigation of the Therac-25 Accidents,
IEEE Computer, Volume 26, Issue 7 (Jul 1993), pp. 18-41
0 Hard to test

Should be alarmed

“No clue why this test failed. We reran it many times and it stays green now.”
“The software hangs on very rare occasions. Just restart it; nothing harmful.”

Talk Outline

= Concurrency Essentials
0 Multi-Threading in a Nutshell
0 Safety & Liveness Criteria

= Structuring Concurrency
0 Design in Architectures
0 Scenarios, patterns & pitfalls
* Producer / Consumer
* Responsive Ul / logic
* Algorithmic parallelization

= Conclusions

Sources of Concurrency in .NET

= Explicit Threads

T
= TPL Tasks (Thread Pools)
= Parallel LINQ
= Finalizers, “C# Destructors”
= Web services, sockets Multi-threading
= Background-Worker — underneath
= Asynchronous calls
= async/await
= Timers
= External calls/callbacks
= Across Processes (via DB, files, network etc.)

Concurrent Programming Model

" Threads operating on
passive objects

0 Via direct or indirect
method calls

0 Parallel or arbitrary
interleaving

0 By default, uncontrolled
0 Need to synchronize
explicitly
= Better models exist
0 Actors, (STM)

Objects
References

Predestinates of Race Conditions

int Next() { if (!loaded) {
return counter++; loaded = true;
} Internalize();
void Swap() { }
t=y,y=X%x; x=1t;
}

foreach (T item in threadSafeCollection) {

}

while (safeBuffer.Size > 0) {
safeBuffer.RemoveFirst();

if (weakReference.IsAlive) {
weakReference.Value.Op();

}

And so on...

Race Condition

= |nsufficiently synchronized accesses on shared
resources
0 Erroneous or undefined behavior
0 Depends on timing/interleaving of concurrent execution

= Low level: Data races
0 Concurrent accesses without sync
0 On same variable or array element
0 Read-write, write-read, write-write
= High level: Unsynchronized sequences

0 Critical (atomic) sections not ensured

Synchronization Abstractions in .NET

= Monitor (aka C# lock with Wait & Pulse)
= Reader-writer lock
= Concurrent collections

" Primitives: Semaphore, Barrier, Mutex,
CountDownEvent, wait handles, ...

= Thread/Task Joins
= Memory level: Interlocked, volatile, barriers/fences

Fixing Races, Causing Deadlocks

class Repository { ..
void CopyTo(Repository target) {
lock(this) {

// get
\ target.Add(content); Nested lock Sendlock
} 4 T1 locks a)
public void Add(T content) { '|le |0th5[;
lock(this) { wants
} // add \TZ wantsaj
}
}
lock a lock b
lock b lock a
Thread T1 Thread T2

a.CopyTo(b); b.CopyTo(a);

10

Deadlock

* Threads wait for each to
release a resource such
that none can proceed

0 Nested locks
0 Cyclic wait dependencies

0 (Mutual blocking
without timeouts)

= |ivelock = Deadlock
consuming processor
while waiting

while (!Wait(timeout)) { }

a
awaits locked
lock by
T1 T2
locked awaits

by lock
b

11

Starvation: Not Much Better

= Fairness problem
0 A thread may never get the chance to access a resource
0 Others could continuously overrun the waiting thread

" Frequent candidates

0 Timeout and retry a.Lock();

while (!b.TryLock()) {
a.Unlock();

0 Optimistic concurrency control // let others continue

a.Lock();

0 Thread priorities

0 Self-designed read/write locks }

0 .NET sync primitives do
not guarantee strict fairness

12

Safety & Liveness Conditions

= Mutual exclusion

0 Critical sections on shared resources are properly
synchronized

= No deadlocks

0 Threads cannot lock each other for indefintie time

|
A13jes

—

= No starvation

0 Thread waiting for a condition should proceed after some
time if the condition is sufficiently often fulfilled

13

Testing Concurrency Bugs?

= Errors are time-dependent / non-determinstic
0 May show up sporadically and extremely seldom
= Multi-thread testing has limitation
0 Would need to test all relevant / possible interleavings

0 Watch sporadic failures!

= Other approaches needed
O Static checkers?
0 Analytical approach

14

Concurrency Checkers

= Static analysis is an unfulfillable wish
0 Exponential state explosion
* Eventually as hard as «halting problems»
0 Good results with some model and dynamic checkers
* MSR Chess for .NET (no longer maintained)
* Intel Inspector XE (also for .NET)
* Java Pathfinder and others

* Own new research project...

= Most analysis tools only detect primitive style issues
0 VS Code Analysis, FxCop, Resharper
0 Detects empty lock-blocks, locking null etc.

15

Need for Analytical Approach

= QOur problem: Threads can run arbitrarily on objects
0 Which threads may access which objects?
0 Which objects must be thread-safe and which not?
0 Exist potentially cyclic wait dependencies?

Need Concurrency Design for Architecture!

16

Concurrency Model in SW Architecture

ldentify active instances
Specify interactions
Define synchronization

s W

Reason about correctness

17

1. Identify Active Instances

= Threads, parallel tasks etc.
0 Self-defined
* Objects running partially or fully decoupled activities
0 Externally imposed
* Single Ul thread, service worker threads, ...

Active object
(thread instance)

\ ~
Active class !: <<thread>> v

StreamReader r : StreamReader

May also model conceptually active instances (running inner threads)

18

Concurrent Class Diagram

Indirectly active
(Ul thread)

N/

AnalysisUI

A 4

AnalysisStats

a

DataAnalyzer

\ 4

StatView

Thread-Safe

\ 4

DataBuffer

*

A\ 4

Record

A

StreamReader

Confined

\ 4

Stream

19

2. Specify Interactions

synchronous call

\
b.put()

r : StreamReader

A

active object

b : DataBuffer

/|

passive object

asynchronous call

—

beginDispatch()

w : WorkerThread

: DispatchQueue

20

Concurrent Communication Diagram

: AnalysisUl

: StatView

e—

: AnalysisStats

update() f

b.get()

: DataAnalyzer

¢ F beginDispatch()

: Record

b: DataBuffer

b.put()

: Record -‘

: StreamReader

read()

: Record

: Stream

21

3. Define Synchronization

thread-safe

|
DataBuffer //Z

put() {guarded}'
get() { guarded }

thread-safe

1/

abs() {concurre'nt}
sign() { concurrent }

Synchronization is
internally realized
(exclusive locks)

not thread-
safe

|
Record / /L

get() { sequentigl }
set() {sequential }

Parallel invocation is
safe
(no / shared locks)

/\

Synchronization must
be externally realized
(confinement)

22

When No Sync is Needed

* Immutable state/objects

0 Synchronization/fence after construction needed

= Confined objects
0 Only used by 1 thread at a time
0 Local to one thread only
0 Encapsulated inside thread-safe container
0 Moved across threads (sync on moving)
0 Threads operate on disjoint parts

client '
part1 Q

client outer C partz)

23

4. Reason About Correctness

= Race condition
JIs Synchronization or confinement defined per class?
J Are critical sections defined and protected?

= Deadlocks
J For nested locks: Is a linear order of locking defined?
I No read-write lock upgrade (unless supported)?

= Starvation
J Fair synchronization primitives (if important)?
JNo priority inversion with multiple thread priorities?

24

Deadlock Prevention

= |Introduce linear order on resources

0 Only acquire locks on resources in ascending order

Lock [1] --—------- > Lock [3] - Lock [4]
]) t)

Item [Item] [Item] Item
[1] [2] [3] [4]

= More coarse grained lock

0 If ordering is not possible (too dynamic object structures)

6)
lock holder;

access items

25

Architectural Deadlock Prevention

= Hierarchy of components /
(5
mOdUIES Service %)
0 Lock per component Implementation

0 Component may comprise
multiple objects

0 Inside component, only use

5 5
Busings) Busir%

the corresponding lock i e
= Call only from upper to 3
lower modules S P
0 Partial order on components ‘ - -
0 Nested locks only according persistefi Bulk Cacé)

in this order Mapper

= Up-calls are deadlock-prone

0 Per events, delegates,
lambdas

26

Archetypical Scenarios & Patterns

" Loosely coupled activities
0 Producer-consumer

= Responsive Ul/logic
0 Asynchronous execution

= Algorithmic parallelization

0 Divide & parallel conquer

27

Producer-Consumer

= Faster than sequential processing
0 Partial decoupling of processing steps
* Wait only when buffer is full or empty
0 Serving IO channels, delayed logging etc.

= Buffer must be thread-safe

0 Concurrent blocking collection, monitor sync etc.

Producer Consumer

Bounded
-—9 6—
Buffer

28

Concurrent Pipelines

= Faster than sequential series processing

Process Process Process
step O step 1 step N

ém_, S ﬁm_,

* Do not use thread pools for this

0 Unsuited for mutual task dependencies
0 Deadlocks for fixed-sized thread pools
0 Thread injection (worker threads increase after delay)

29

Monitor: Know the Pitfalls!

class BoundedBuffer<T> {

public void Put(T x) {
lock(this) {
while(queue.Count == limit) { Monitor.Wait(this); }
queue.Enqueue(x);
Monitor.PulseAll(this); // signal non-free

}

}
public T Get() {

lock(this) {
while(queue.Count == @) { Monitor.Wait(this); }
T x = queue.Dequeue();
Monitor.PulseAll(this); // signal non-full
return Xx;

}
}
}

30

Monitor Pitfalls

= Recheck wait conditions

0 Between pulse and monitor reentrance, other threads may
enter before and invalidate the condition

0 while(!condition) {
Monitor.Wait(syncNode);

}
= PulseAll() in case of multiple wait conditions

0 E.g. non-full, non-empty
0 Monitor.PulseAll(syncNode)

31

Responsive Ul/Logic

= Ul is single-threaded

0 Keep responsive by outsourcing blocking/computing-
intense tasks to other threads

0 Only Ul thread must access GUI controls

= E.g. C# 5 async/await model

public async Task<int> LongOperationAsync() { .. }

Task<int> task = LongOperationAsync();
// other work

int result = await task;

// continue

32

Caution: Async/Await Execution Model

= Async methods are half-synchronous/half-
asynchronous

0 Caller executes methods synchronously until a blocking
await occurs

0 Afterwards method runs asynchronouly

async Task<int> GetSitelLengthAsync(string url) {
HttpClient client = new HttpClient();
Task<string> task = client.GetStringAsync(url);
string sitel = await task; Asynchronous
return sitel.Length; = (potentially other

} thread)

Synchronous
(caller thread)

|

33

Case 1: No Synchronization Context

= Task thread executes part after await

Caller
Thread
Voo ,
call async Task OpAsync() {
TPL
- Thread
v Task t = OtherAsync(); -4----- t -EEI-(-‘EE?E ------ >
(____________________
return
Task t
e \ 4
await t; task end
v

Continuation

34

Case 2: With Synchronization Context

= E.g. GUI thread as caller: dispatch

GUI Thread
\ 2)
caller async Task OpAsync() A
TPL
" task start Thread
v Task t = OtherAsync(); -4 >
< ___________________
return
Task t
Dispatch of the continuation v
R e e TR E R R
task end
Yo S

await t;

Various Async/Await Pitfalls

Async methods are not per se asynchronous
Thread switch inside methods
Quasi-parallelism in Ul event handler

Race conditions remain possible

Ul deadlocks because of wrong task access
Exceptions are ignored for «fire-and-forget»

N o U s W NhRE

Premature termination of «fire and forget»

36

Divide & Parallel Conquer

= (Classical parallelization for acceleration
= Thread pool is the way to go

void MergeSort(l, r) { void Convert(IList<File> files) {
long m = (1 + r)/2; foreach (File f in files) {
MergeSort(l, m); Convert(f);
MergeSort(m, r); }
Merge(l, m, r) }

}
" 4
Paziliilﬁi:gzzsﬁt(l, n, Parallel.Foreach(files,

f => Convert(f)

))s
\’ J __ J

() => MergeSort(m, r)

37

Task Parallelization in the Cloud

.NET Program

" Program parallel tasks in .NET

Parallel
Tasks

= Send to cloud for execution
" Cloud side has e.g. MS HPC cluster

Runtime Extension

http://concurrency.ch/Projects/TaskParallelism .NET Runtime

var distribution =
new Distribution("tasks.concurrency.ch", ..); Task Parallelization

Service

distribution.ParallelFor(0, inputs.Length, (i) => {
outputs[i] = Factorize(inputs[i]);
DK HPC Cluster

private long Factorize(long number) {
for (long k = 2; k * k <= number; k++) {
if (number % k == @) { return k; }
}

return number;

}

38

http://concurrency.ch/Projects/TaskParallelism

Conclusions

= Concurrency becomes increasingly important

0 Programmers need to strengthen their skills
= Danger of non-deterministic errors

0 Clear concurrency design for SW architecture is vital

= Various pitfalls lurk in maintaining technologies

0 Awareness is required as long as tools do not help here

39

Thanks for Your Attention!

= NET Concurrency Courses

0 http://concurrency.ch/Training

= Consulting & Reviews

= Engineering & Research Projects
= Contact

Prof. Dr. Luc Blaser

HSR Hochschule fiir Technik Rapperswil
IFS Institut fur Software

|Iblaeser@hsr.ch

http://concurrency.ch, http://ifs.hsr.ch

| HSR | @® ¢ INsTITUT
HOCHSCHULE FUR TECHNIK i1 ®_©0 EUR
- - RRRRRR SWIL § @
i ® ° soFTwARE

hhhhhhhhhhhhhhhhhhhhhhhhhhh Biorc

HSR Concurrency Lab

Prof. Dr. Luc Blaser

http://concurrency.ch/Training
mailto:lblaeser@hsr.ch
http://concurrency.ch/
http://concurrency.ch/

Institut flir Software (IFS)

Partners

Academic collaborators

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788
http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=gkeuD_8LBU3XDM&tbnid=Me9rjbv7IFTAzM:&ved=0CAUQjRw&url=http://electronics4you.cc/agenda_hsr.html&ei=23A8UuyDDIyMswaMjYHQAQ&bvm=bv.52434380,d.Yms&psig=AFQjCNHcHx7QkUQmkgKs7ASojUyplHAJmQ&ust=1379779142844788

